RF Exposure Lab

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE R&D SAR EVALUATION

Lif3 Americas 39 Wellington Drive Long Valley, NJ 07853

Dates of Test: Test Report Number: July 21-22, 2016 R&D.20160703 **Revision A**

Model(s):	Radi-Chip with iPhone 5 & iPhone 5s
Test Sample:	Engineering Unit Same as Production
Equipment Type:	RF Radiation Reducing Chip
Classification:	Portable Transmitter Next to Head
TX Frequency Range:	824 – 849 MHz; 1850 – 1910 MHz
Frequency Tolerance:	± 2.5 ppm
Maximum RF Output:	Not Measured
Signal Modulation:	WCDMA
Antenna Type:	Internal
Application Type:	Evaluation
FCC Rule Parts:	Part 2, 22, 24
KDB Test Methodology:	KDB 447498 D01 v06, KDB 648474 D01 v01r05, KDB 941225 D01 v03r01
Max. Measured SAR Value:	0.995W/kg

This wireless mobile and/or portable device has been tested for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Jav M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [5]	4
2. SAR Measurement Setup	
Robotic System	5
System Hardware	5
System Electronics	
Probe Measurement System	
3. Probe and Dipole Calibration	
4. Phantom & Simulating Tissue Specifications	
Head & Body Simulating Mixture Characterization	
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	15
Uncontrolled Environment	15
Controlled Environment	
6. Measurement Uncertainty	
7. System Validation	17
Tissue Verification	
Test System Verification	
8. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
9. FCC 3G Measurement Procedures	
9.1 Procedures Used to Establish RF Signal for SAR	
9.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	19
SAR Data Summary – 850 MHz	
SAR Data Summary – 1900 MHz	
10. Test Equipment List	
11. Conclusion	
12. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	35
Appendix C – Test Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	88
Appendix F – Phantom Calibration Data Sheets1	05

1. Introduction

This measurement report shows the results of the Lif3 Americas Model Radi-Chip with iPhone 5 & iPhone 5s with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Lif3 Americas Model Radi-Chip with iPhone 5 & iPhone 5s and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], and IEC 62209 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures[5] were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

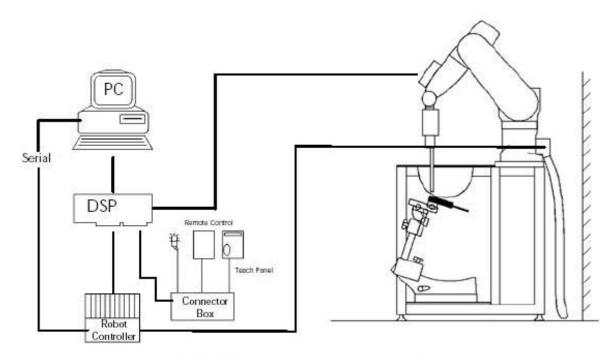


Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe Specifications

Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz

- Frequency: 10 MHz to 6 GHz
- Linearity: ±0.2dB (30 MHz to 6 GHz)
- Dynamic: 10 mW/kg to 100 W/kg

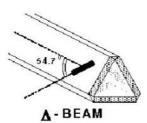


Figure 2.2 Triangular Probe Configurations

Range: Linearity: ±0.2dB

Dimensions: Overall length: 330 mm

- Tip length: 20 mm
- Body diameter: 12 mm
- Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing Compliance tests of wireless device

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

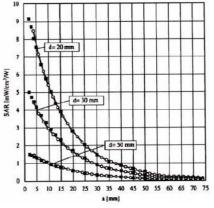
$$SAR = C \frac{\Delta T}{\Delta t}$$
 $SAR =$

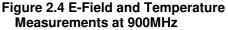
where:

$$\Delta t$$
 = exposure time (30 seconds),

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

 σ = simulated tissue conductivity,


 Δt = exposure time (so seconds), C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)


where:

 ΔT = temperature increase due to RF exposure.

SAR is proportional to ΔT / Δt , the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

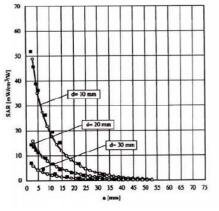


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$W_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter)
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
with V_{i} = compensated signal of channel i (i = x,y,z)
Norm_{i} = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^{2}$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_{i} = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{2} \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^{2}}{3770}$$
 with P_{pwe} = equivalent power density of a plane wave in W/cm²
 E_{tot} = total electric field strength in V/m

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y-dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges					
Frequency range	Grid spacing				
≤ 2 GHz	≤ 15 mm				
2 – 4 GHz	≤ 12 mm				
4 – 6 GHz	≤ 10 mm				

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

• A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges							
Frequency range	Grid spacing	Grid spacing	Minimum zoom				
r requeitcy range	for x, y axis	for z axis	scan volume				
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm				
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm				
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm				
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm				
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm				

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three onedimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom:	
Shell Material:	
Thickness:	

SAM Twin Phantom (V4.0) Vivac Composite 2.0 ± 0.2 mm

Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worstcase condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. Probe and Dipole Calibration

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528 – 2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

la suo d'a sta		Simulating Tissue			
Ingredients		850 MHz Head	1900 MHz Head		
Mixing Percentage					
Water		40.92	54.88		
Sugar		56.65	0.00		
Salt		1.49	0.21		
HEC		1.00	0.00		
Bactericide		0.10	0.00		
DGBE		0.00	44.91		
Dielectric Constant	Target	41.50	40.00		
Conductivity (S/m)	Target	0.91	1.40		

Table 4.1 Typical Composition of Ingredients for Tissue

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

Table 5.1 Human Exposure Limits

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters									
		835 N	/Hz Head	1900 MHz Head					
Date(s)		Jul.	21, 2016	Jul. 22, 2016					
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured				
Dielectric Constant: ε	41.50	41.42	40.00	39.52					
Conductivity: σ		0.91	0.91	1.40	1.42				
		835 N	/Hz Head	1900 N	MHz Head				
Date(s)		Sept. 9, 2016		Sept. 9, 2016					
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured				
Dielectric Constant: ε		41.50	41.11	40.00	39.95				
Conductivity: σ		0.91	0.92	1.40	1.46				

Table 7.1 Measured Tissue Parameters

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

 Table 7.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	Plot Number
21-Jul-2016	835 MHz	9.23	9.24	Head	+ 0.11	1
22-Jul-2016	1900 MHz	41.50	42.40	Head	+ 2.17	2
09-Sep-2016	835 MHz	9.23	9.24	Head	+ 0.11	3
09-Sep-2016	1900 MHz	41.50	40.70	Head	- 1.93	4

See Appendix A for data plots.

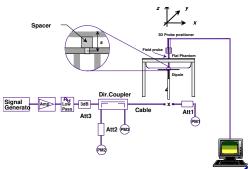


Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

Positioning of the Radi-Chip was determined by the client for all testing.

9. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

9.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

9.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

For HSDPA Rel 6	 Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC). Set and send continuously Up power control commands to the device Measure the power at the device antenna connector using the power meter with average detector.
FUI HSDFA Hei U	 Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP. Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
	 Send continuously Up power control commands to the device Measure the power at the device antenna connector using the power meter with modulated average detector.
For HSUPA Rel 6	 Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.
	 Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms. Set the Absolute Grant for HSUPA Subtest1 according to Table below. Set the device power to be at least 5dB lower than the Maximum output power Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported. Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Measure the power using the power meter with modulated average detector.

SAR Data Summary – 850 MHz

MEASUREMENT RESULTS

Gap Plo	Plot	Frequ	iency	Mod.	Phone	Pos.	Config.	RMC/RB	Test Setup/	Measured SAR	%													
	1 101	MHz	Ch.	widd.	THONE	e rus.	ooning.	TIMO/TID	Offset	(W/kg)	Reduced													
	1	836.6	4183	WCDMA	iPhone 5	Diabt	Baseline	12.2 kbps	Test Loop 1	0.511	-89.0													
	2	836.6	4183	WCDMA		With Chip	12.2 kbps	Test Loop 1	0.0966	-09.0														
	3	836.6	4183	WCDMA		IFIIONE 5	IFIIONE 5	IF HOHE 5					IF Holle 5			Baseline	12.2 kbps	Test Loop 1	0.563	-82.6				
0	4	836.6	4183	WCDMA																				
mm	5	836.6	4183	WCDMA		Diabt	Baseline	12.2 kbps	Test Loop 1	0.507	-72.8													
	6	836.6	4183	WCDMA	iDhono Fo	Right	With Chip	12.2 kbps	Test Loop 1	0.138	-72.0													
	7	836.6	4183	WCDMA	IFTIONE 35	iPhone 5s	Baseline	12.2 kbps	Test Loop 1	0.569	06.0													
	8	836.6	4183	WCDMA	Left		With Chip	12.2 kbps	Test Loop 1	0.078	-86.3													

	Body 1.6 W/kg (mW/g) averaged over 1 gram				
ll tests. ⊠Conducted	ERP	EIRP			
□Left Head □Head	\boxtimes Eli4 \boxtimes Body	Right Head			
Test Code	Base Station Sin				

- 1. Battery is fully charged for all tests. Power Measured
- 2. SAR Measurement Phantom Configuration SAR Configuration

3. Test Signal Call Mode

- 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 1900 MHz

MEASUREMENT RESULTS

Gap	Plot	Frequency		Mod.	Phone	Pos.	Config.	RMC/RB	Test Setup/	Measured SAR	%
		MHz	Ch.	Mou.	rnone	r 03.	ooning.	TIMO/TID	Offset	(W/kg)	Reduced
	9	1880	9400	WCDMA	iPhone 5	Right	Baseline	12.2 kbps	Test Loop 1	0.995	-96.9
0 mm	10	1880	9400	WCDMA			With Chip	12.2 kbps	Test Loop 1	0.0311	
	11	1880	9400	WCDMA		Left	Baseline	12.2 kbps	Test Loop 1	0.606	-94.3
	12	1880	9400	WCDMA			With Chip	12.2 kbps	Test Loop 1	0.0345	
	13	1880	9400	WCDMA	iPhone 5s	Right	Baseline	12.2 kbps	Test Loop 1	0.919	-72.3
	14	1880	9400	WCDMA			With Chip	12.2 kbps	Test Loop 1	0.255	
	15	1880	9400	WCDMA		Left	Baseline	12.2 kbps	Test Loop 1	0.409	-53.3
	16	1880	9400	WCDMA			With Chip	12.2 kbps	Test Loop 1	0.191	

				Body 1.6 W/kg (mW/g) averaged over 1 gram
1.	Battery is fully charged for	all tests.		
	Power Measured	Conducted	ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	Eli4	Right Head
	SAR Configuration	Head	Body	
3.	Test Signal Call Mode	Test Code	Base Station	n Simulator
4.	Test Configuration	With Belt Clip	Without Be	lt Clip 🖾 N/A

- Power Measured 2. SAR Measurement
 - Phantom Configuration
- 4. Test Configuration 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

10. Test Equipment List

Table 10.1 Equipment Specifications							
Туре	Calibration Due Date	Calibration Done Date	Serial Number				
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01				
Measurement Controller CS8c	N/A	N/A	1012				
Twin Phantom	N/A	N/A	1416				
Device Holder	N/A	N/A	N/A				
Data Acquisition Electronics 4	02/09/2017	02/09/2016	1217				
Data Acquisition Electronics 4	01/14/2017	01/14/2016	1321				
SPEAG E-Field Probe ES3DV3	02/16/2017	02/16/2016	3311				
SPEAG E-Field Probe EX3DV4	08/20/2016	08/20/2015	3693				
SPEAG E-Field Probe EX3DV4	01/27/2017	01/27/2016	3833				
Speag Validation Dipole D835V2	08/10/2017	08/10/2015	4d131				
Speag Validation Dipole D1900V2	08/13/2017	08/13/2015	5d147				
Agilent N1911A Power Meter	05/20/2017	05/20/2015	GB45100254				
Agilent N1922A Power Sensor	06/25/2017	06/25/2015	MY45240464				
Advantest R3261A Spectrum Analyzer	03/26/2017	03/26/2015	31720068				
Agilent (HP) 8350B Signal Generator	03/26/2017	03/26/2015	2749A10226				
Agilent (HP) 83525A RF Plug-In	03/26/2017	03/26/2015	2647A01172				
Agilent (HP) 8753C Vector Network Analyzer	03/26/2017	03/26/2015	3135A01724				
Agilent (HP) 85047A S-Parameter Test Set	03/26/2017	03/26/2015	2904A00595				
Agilent (HP) 8960 Base Station Sim.	03/31/2017	03/31/2015	MY48360364				
Anritsu MT8820C	07/28/2017	07/28/2015	6201176199				
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184				
MiniCircuits BW-N20W5+ Fixed 20 dB	N/A	N/A	N/A				
Attenuator							
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746				
Aprel Dielectric Probe Assembly	N/A	N/A	0011				
Head Equivalent Matter (835 MHz)	N/A	N/A	N/A				
Head Equivalent Matter (1900 MHz)	N/A	N/A	N/A				

© 2016 RF Exposure Lab, LLC Page 22 of 106 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

11. Conclusion

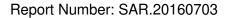
The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

12. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.


[3] ANSI/IEEE C95.3 – 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

Test Result for UIM Dielectric Parameter Thu 21/Jul/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eH FCC_sH Test_e Test_s FreqFCC_eH FCC_sH Test_e Test_s0.805041.660.9041.600.880.815041.600.9041.540.890.825041.550.9041.470.900.835041.500.9041.420.910.836641.500.90241.4170.912*0.845041.500.9240.390.930.865041.500.9340.370.94 * value interpolated Test Result for UIM Dielectric Parameter Fri 22/Jul/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *****

***** Test Result for UIM Dielectric Parameter Fri 09/Sep/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ______ ***** * value interpolated Test Result for UIM Dielectric Parameter Fri 09/Sep/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqFCC_eH FCC_sH Test_e Test_s1.830040.001.4040.091.411.840040.001.4040.071.421.850040.001.4040.051.431.860040.001.4040.031.441.870040.001.4040.011.451.880040.001.4039.991.451.890040.001.4039.971.461.900040.001.4039.931.461.910040.001.4039.911.471.930040.001.4039.891.47

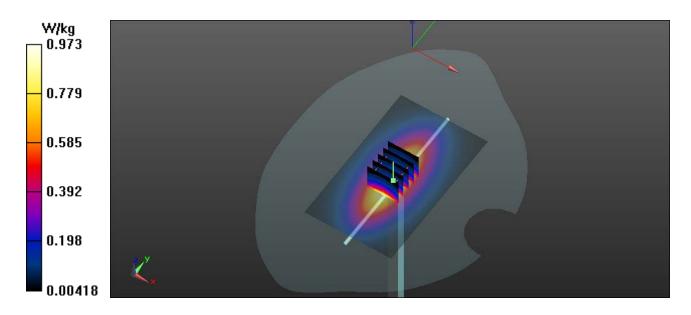
RF Exposure Lab

Plot 1

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131

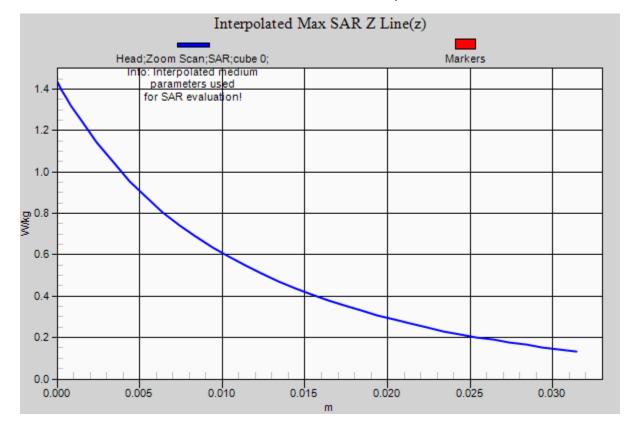
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ_r = 41.42; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(6.43, 6.43, 6.43); Calibrated: 2/16/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz Verification/Head/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.973 W/kg


835 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.385 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.432 mW/g SAR(1 g) = 0.924 mW/g; SAR(10 g) = 0.601 mW/g

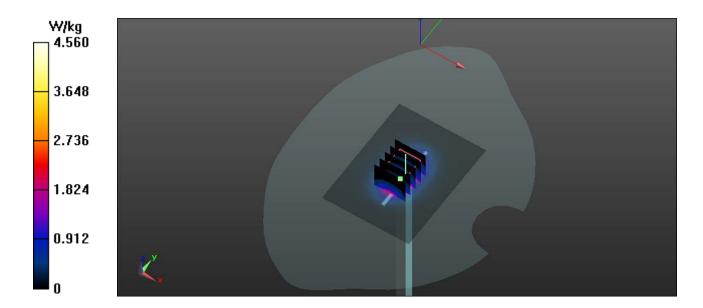
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.25 W/kg

Report Number: SAR.20160703

RF Exposure Lab

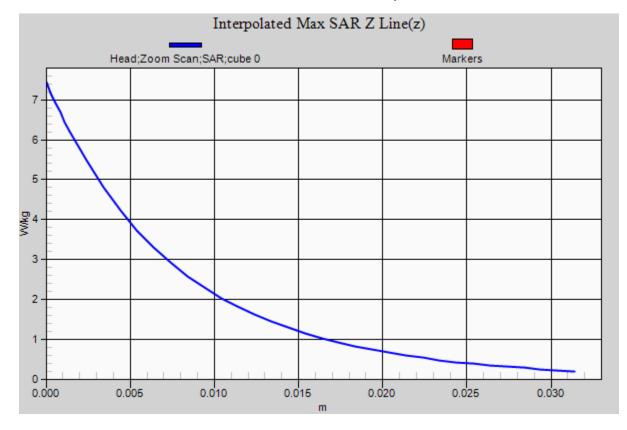
Plot 2

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: 5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.52; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


1900 MHz Verification/Head/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.56 W/kg

1900 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.385 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.437 mW/g **SAR(1 g) = 4.24 mW/g; SAR(10 g) = 2.02 mW/g** Maximum value of SAR (measured) = 6.14 W/kg

Report Number: SAR.20160703

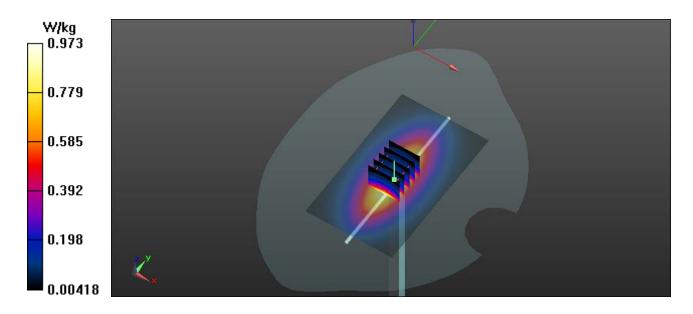
RF Exposure Lab

Plot 3

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131

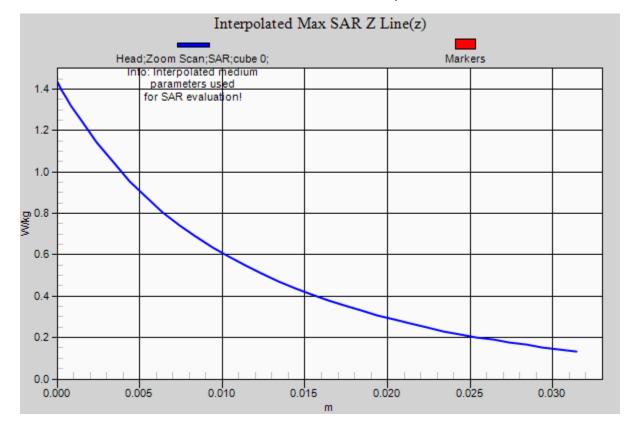
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 835 MHz; σ = 0.92 mho/m; ϵ_r = 41.105; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz Verification/Head/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.973 W/kg


835 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.385 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.432 mW/g SAR(1 g) = 0.924 mW/g; SAR(10 g) = 0.601 mW/g

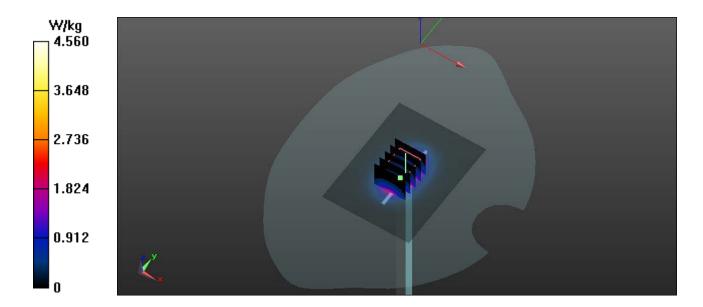
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.25 W/kg

Report Number: SAR.20160703

RF Exposure Lab

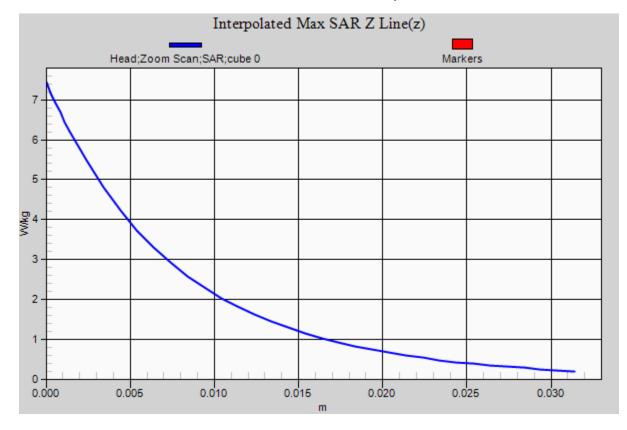
Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: 5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ_r = 39.95; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


1900 MHz Verification/Head/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.56 W/kg

1900 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.385 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.437 mW/g **SAR(1 g) = 4.07 mW/g; SAR(10 g) = 2.12 mW/g** Maximum value of SAR (measured) = 6.14 W/kg

Report Number: SAR.20160703

Appendix B – SAR Test Data Plots

RF Exposure Lab

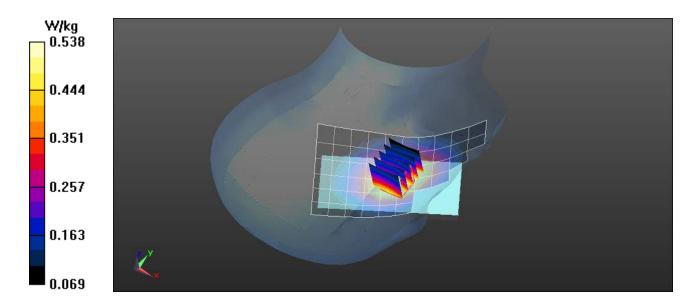
Plot 1

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.92 S/m; ϵ_r = 41.105; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

iPhone 5 850 Right Head/Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.566 W/kg

iPhone 5 850 Right Head/Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.30 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.628 W/kg SAR(1 g) = 0.511 W/kg; SAR(10 g) = 0.388 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.538 W/kg

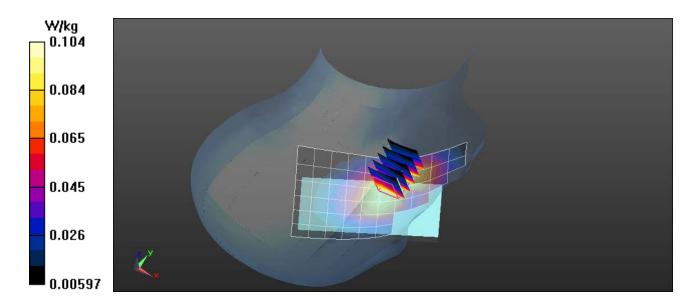
Plot 2

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.92 S/m; ϵ_r = 41.105; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

iPhone 5 850 Right Head/With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.105 W/kg

iPhone 5 850 Right Head/With Chip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.831 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.134 W/kg SAR(1 g) = 0.097 W/kg; SAR(10 g) = 0.066 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.104 W/kg

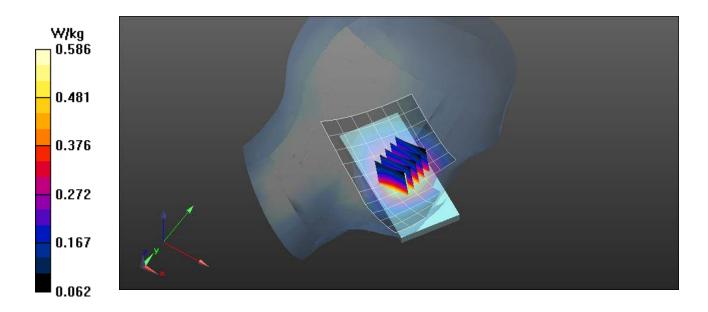
Plot 3

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.92 S/m; ϵ_r = 41.105; ρ = 1000 kg/m³ Phantom section: Left Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

iPhone 5 850 Left Head/Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.581 W/kg

iPhone 5 850 Left Head/Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.48 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.694 W/kg SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.425 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.586 W/kg

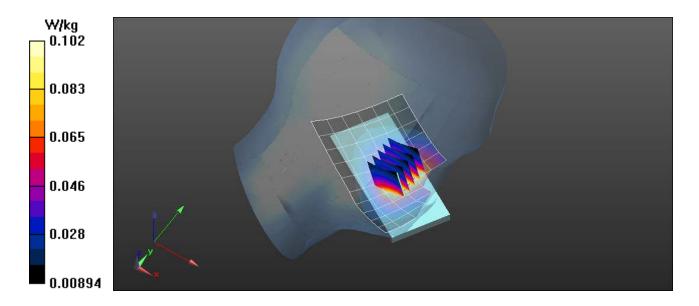
Plot 4

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.92 S/m; ϵ_r = 41.105; ρ = 1000 kg/m³ Phantom section: Left Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

iPhone 5 850 Left Head/With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.0981 W/kg

iPhone 5 850 Left Head/With Chip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.989 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.119 W/kg SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.073 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.102 W/kg

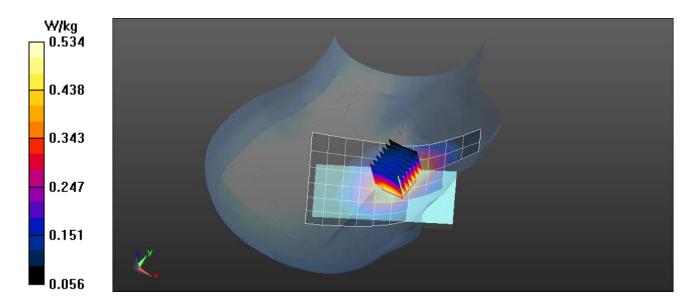
Plot 5

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 850 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.912 S/m; ϵ_r = 41.417; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(6.43, 6.43, 6.43); Calibrated: 2/16/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.5 (19); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

Configuration/Right Head Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.517 W/kg

Configuration/Right Head Baseline/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.572 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.639 W/kg SAR(1 g) = 0.507 W/kg; SAR(10 g) = 0.376 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.534 W/kg

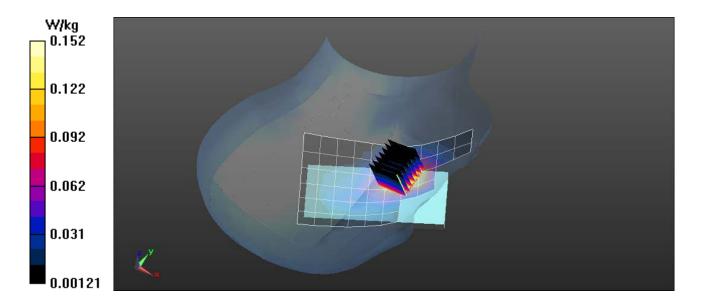
Plot 6

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 850 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.912 S/m; ϵ_r = 41.417; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(6.43, 6.43, 6.43); Calibrated: 2/16/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.5 (19); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

Configuration/Right Head With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.147 W/kg

Configuration/Right Head With Chip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.098 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.234 W/kg SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.080 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.152 W/kg

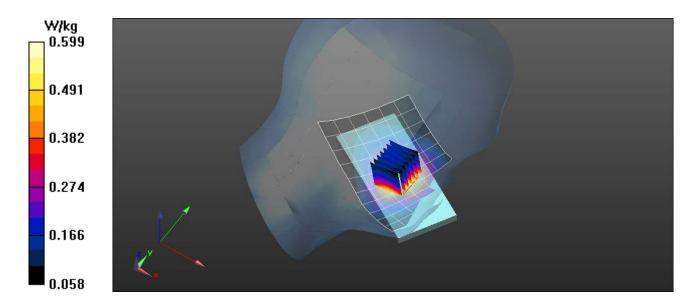
Plot 7

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 850 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.912 S/m; ϵ_r = 41.417; ρ = 1000 kg/m³ Phantom section: Left Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(6.43, 6.43, 6.43); Calibrated: 2/16/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

Configuration/Left Head Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.593 W/kg

Configuration/Left Head Baseline/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.06 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.683 W/kg SAR(1 g) = 0.569 W/kg; SAR(10 g) = 0.425 W/kg

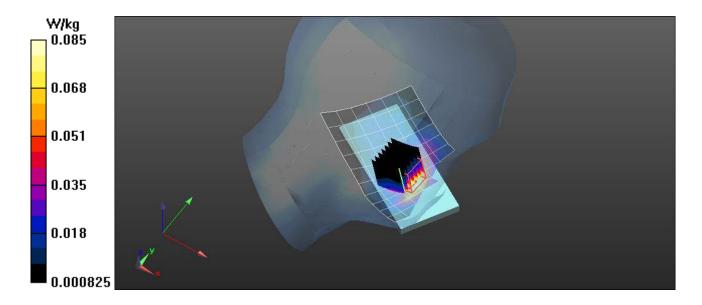
Plot 8

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 850 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.912 S/m; ϵ_r = 41.417; ρ = 1000 kg/m³ Phantom section: Left Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(6.43, 6.43, 6.43); Calibrated: 2/16/2016; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

Configuration/Left Head With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.0829 W/kg

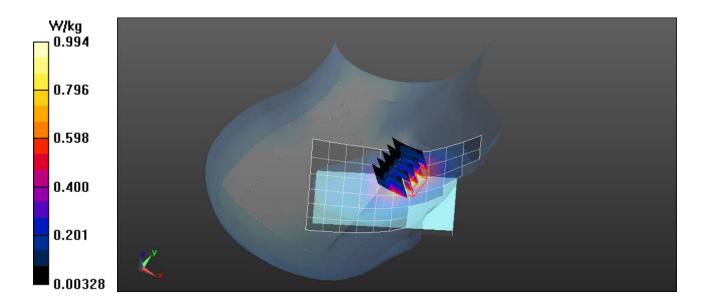
Configuration/Left Head With Chip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.921 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.126 W/kg SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.045 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.0852 W/kg

Plot 9

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.99; ρ = 1000 kg/m³ Phantom section: Right Section


Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

iPhone 5 1900 Right Head/Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.963 W/kg

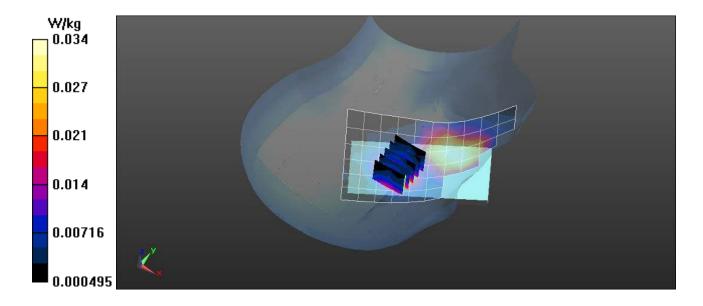
iPhone 5 1900 Right Head/Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.57 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.69 W/kg SAR(1 g) = 0.995 W/kg; SAR(10 g) = 0.519 W/kg Maximum value of SAR (measured) = 0.994 W/kg

Plot 10

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.99; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

iPhone 5 1900 Right Head/With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0356 W/kg

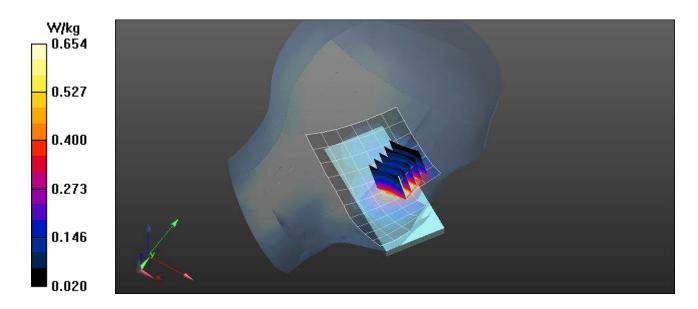
iPhone 5 1900 Right Head/With Chip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.054 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.0470 W/kg SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.019 W/kg Maximum value of SAR (measured) = 0.0338 W/kg

Plot 11

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.99; ρ = 1000 kg/m³ Phantom section: Left Section


Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

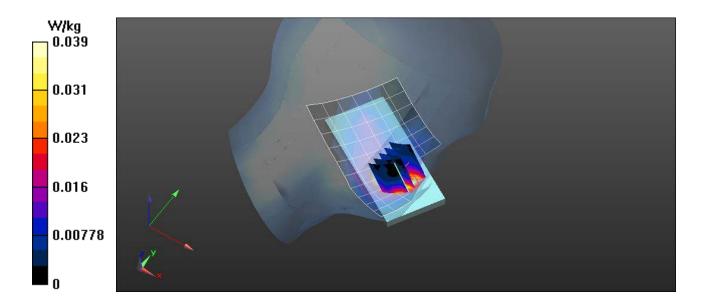
iPhone 5 1900 Left Head/Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.652 W/kg

iPhone 5 1900 Left Head/Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.908 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.872 W/kg SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.393 W/kg Maximum value of SAR (measured) = 0.654 W/kg

Plot 12

DUT: iPhone 5; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.99; ρ = 1000 kg/m³ Phantom section: Left Section


Test Date: Date: 9/9/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

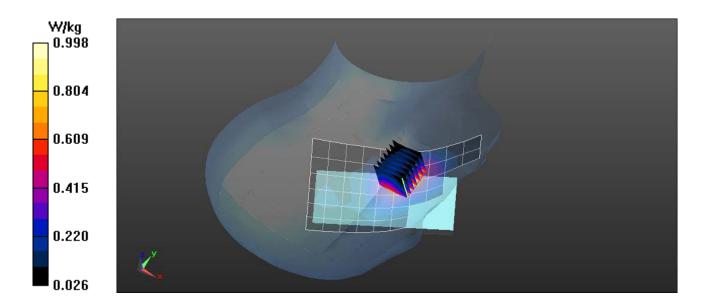
iPhone 5 1900 Left Head/With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0347 W/kg

iPhone 5 1900 Left Head/With Chip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.992 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.0540 W/kg SAR(1 g) = 0.034 W/kg; SAR(10 g) = 0.021 W/kg Maximum value of SAR (measured) = 0.0389 W/kg

Plot 13

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵ_r = 39.55; ρ = 1000 kg/m³ Phantom section: Right Section


Test Date: Date: 7/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.36, 7.36, 7.36); Calibrated: 8/20/2015; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

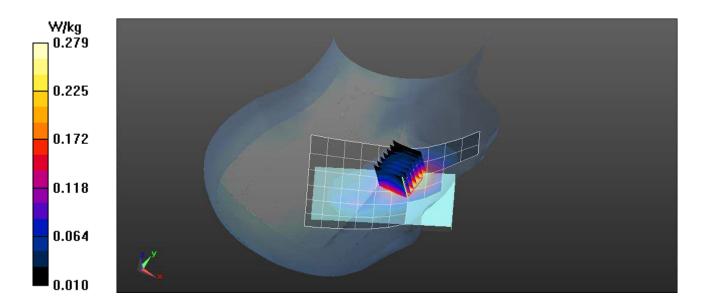
Configuration/Right Head Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.897 W/kg

Configuration/Right Head Baseline/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.930 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.919 W/kg; SAR(10 g) = 0.560 W/kg Maximum value of SAR (measured) = 0.998 W/kg

Plot 14

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵ_r = 39.55; ρ = 1000 kg/m³ Phantom section: Right Section


Test Date: Date: 7/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.36, 7.36, 7.36); Calibrated: 8/20/2015; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

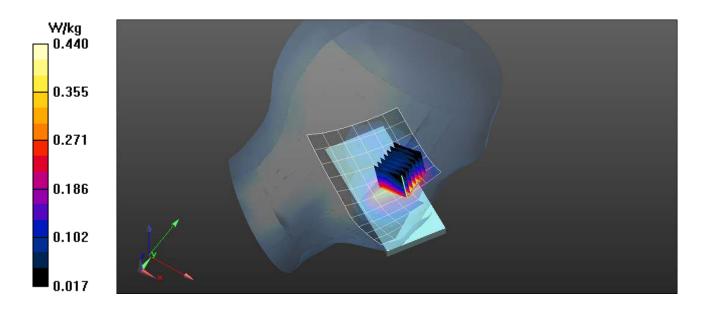
Configuration/Right Head With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.268 W/kg

Configuration/Right Head With Chip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.554 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.368 W/kg SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.168 W/kg Maximum value of SAR (measured) = 0.279 W/kg

Plot 15

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵ_r = 39.55; ρ = 1000 kg/m³ Phantom section: Left Section


Test Date: Date: 7/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.36, 7.36, 7.36); Calibrated: 8/20/2015; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.5 (19); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

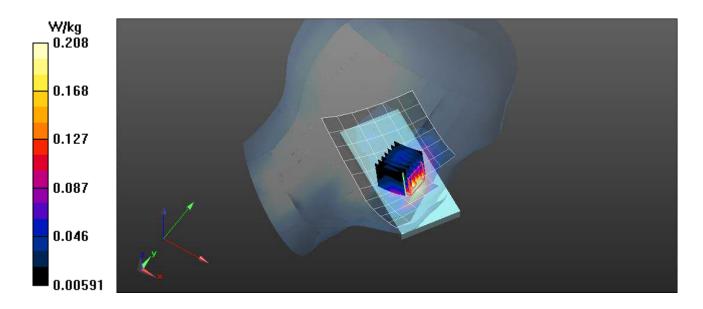
Configuration/Left Head Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.419 W/kg

Configuration/Left Head Baseline/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.439 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.589 W/kg SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.269 W/kg Maximum value of SAR (measured) = 0.440 W/kg

Plot 16

DUT: iPhone 5s; Type: Cell Phone; Serial: Test

Communication System: 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵ_r = 39.55; ρ = 1000 kg/m³ Phantom section: Left Section


Test Date: Date: 7/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.36, 7.36, 7.36); Calibrated: 8/20/2015; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1416 Measurement SW: DASY4, Version 4.5 (19); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Configuration/Left Head With Chip/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.199 W/kg

Configuration/Left Head With Chip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.535 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.254 W/kg SAR(1 g) = 0.191 W/kg; SAR(10 g) = 0.127 W/kg Maximum value of SAR (measured) = 0.208 W/kg

Appendix C – Test Photos

iPhone 5 Chip Location

Report Number: SAR.20160703

iPhone 5s Chip Location

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

Certificate No: ES3-3311_Feb16

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3311
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	February 16, 2016
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Jola .
Approved by:	Katja Pokovic	Technical Manager	Job Ky
			Issued: February 18, 2016
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3311

Manufactured: July 5, 2011 Calibrated:

February 16, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.28	1.07	0.47	± 10.1 %
DCP (mV) ^B	103.8	103.5	101.2	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊧]
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	220.4	±3.0 %
		Y	0.0	0.0	1.0		222.4	
		Z	0.0	0.0	1.0		211.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

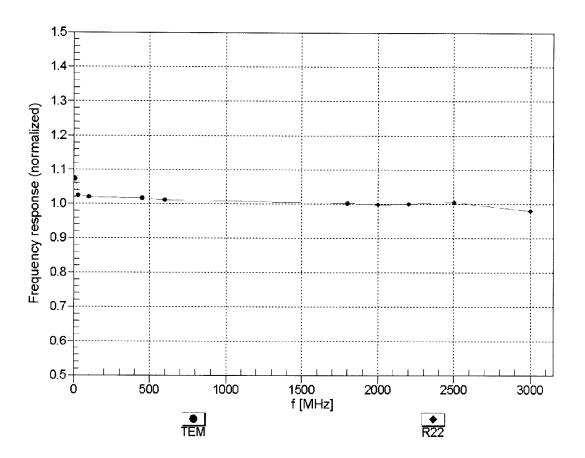
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	45.3	0.87	7.52	7.52	7.52	0.15	1.71	± 13.3 %
600	42.7	0.88	6.73	6.73	6.73	0.15	1.50	± 13.3 %
835	41.5	0.90	6.43	6.43	6.43	0.40	1.75	± 12.0 %
1640	40.3	1.29	5.49	5.49	5.49	0.47	1.54	± 12.0 %
2300	39.5	1.67	4.92	4.92	4.92	0.79	1.24	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.30	± 12.0 %
2600	39.0	1.96	4.44	4.44	4.44	0.80	1.35	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

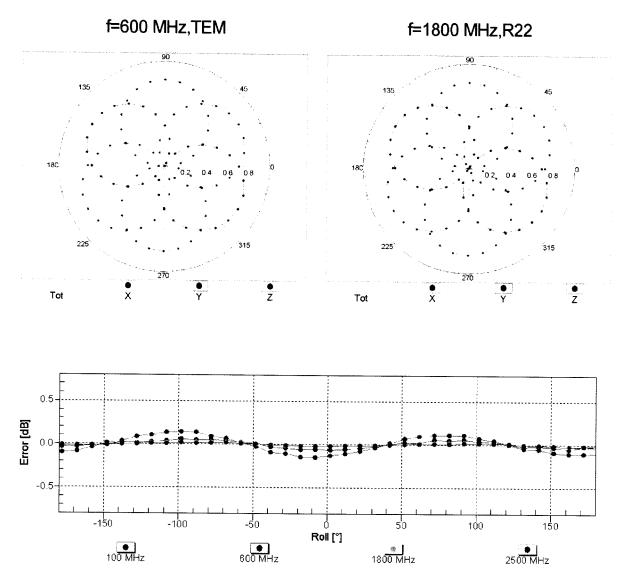
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

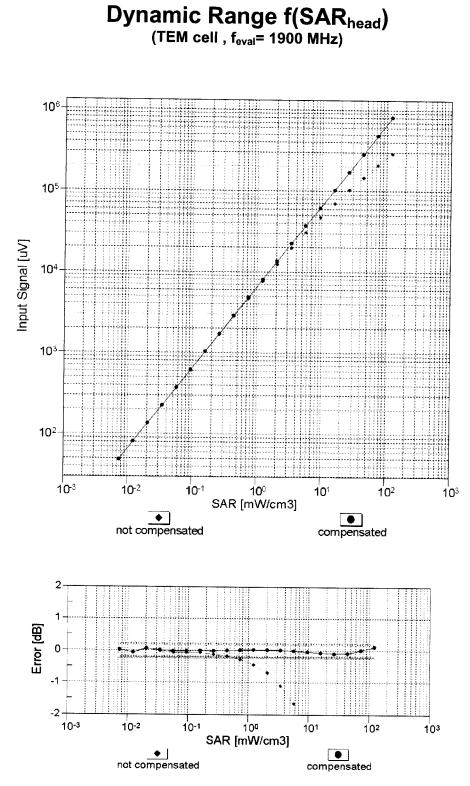

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	58.2	0.92	7.31	7.31	7.31	0.13	1.00	± 13.3 %
600	56.1	0.95	6.76	6.76	6.76	0.12	1.50	± 13.3 %
835	55.2	0.97	6.33	6.33	6.33	0.62	1.40	± 12.0 %
1640	53.8	1.40	5.33	5.33	5.33	0.51	1.53	± 12.0 %
2300	52.9	1.81	4.69	4.69	4.69	0.80	1.25	± 12.0 %
2450	52.7	1.95	4.43	4.43	4.43	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.17	4.17	4.17	0.80	1.22	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

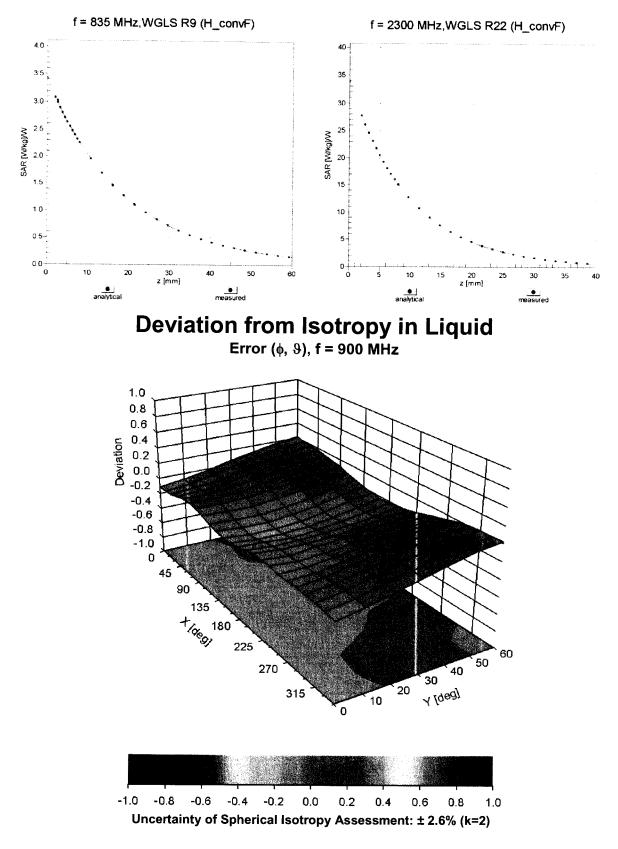
^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

 Client
 RF Exposure Lab
 Certificate No: EX3-3693_Aug15

 CALIBRATION CERTIFICATE
 Object
 EX3DV4 - SN:3693

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

Calibration procedure(s)

August 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 1 2
			$q = (\ell - \cdot)$
Approved by:	Katja Pokovic	Technical Manager	1 ann
			Actes
			Issued: August 24, 2015
This calibration certificate	shall not be reproduced except in	full without written approval of the labor	atory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
O	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3693

Manufactured: April 22, 2009 Calibrated:

August 20, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.40	0.33	0.37	± 10.1 %	
DCP (mV) ^B	100.9	101.9	108.9		

Modulation Calibration Parameters

UID 0	Communication System Name		Α	В	C 1.0	D dB 0.00	VR mV 159.8	Unc ^E (k=2) ±2.7 %
			dB	dBõV				
	CW	X	0.0	0.0				
		Y	0.0	0.0	1.0		142.7	
		Z	0.0	0.0	1.0		136.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^a Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

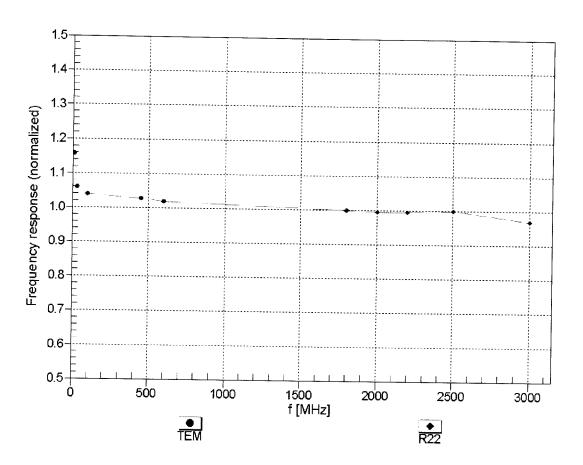
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)	
150	52.3	0.76	10.91	10.91	10.91	0.00	1.00	± 13.3 %	
220	49.0	0.81	10.29	10.29	10.29	0.00	1.00	± 13.3 %	
450	43.5	0.87	9.42	9.42	9.42	0.17	1.80	± 13.3 %	
750	41.9	0.89	8.93	8.93	8.93	0.40	0.89	± 12.0 %	
900	41.5	0.97	8.63	8.63	8.63	0.33	1.01	± 12.0 %	
1750	40.1	1.37	7.56	7.56	7.56	0.33	0.80	± 12.0 %	
1900	40.0	1.40	7.36	7.36	7.36	0.29	0.80	± 12.0 %	
2300	39.5	1.67	7.09	7.09	7.09	0.40	0.80	± 12.0 %	
2450	39.2	1.80	6.67	6.67	6.67	0.28	0.97	± 12.0 %	
2600	39.0	1.96	6.55	6.55	6.55	0.32	0.80	± 12.0 %	
5200	36.0	4.66	4.82	4.82	4.82	0.35	1.80	± 13.1 %	
5300	35.9	4.76	4.69	4.69	4.69	0.35	1.80	± 13.1 %	
5500	35.6	4.96	4.68	4.68	4.68	0.40	1.80	± 13.1 %	
5600	35.5	5.07	4.50	4.50	4.50	0.40	1.80	± 13.1 %	
5800	35.3	5.27	4.35	4.35	4.35	0.40	1.80	± 13.1 %	

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

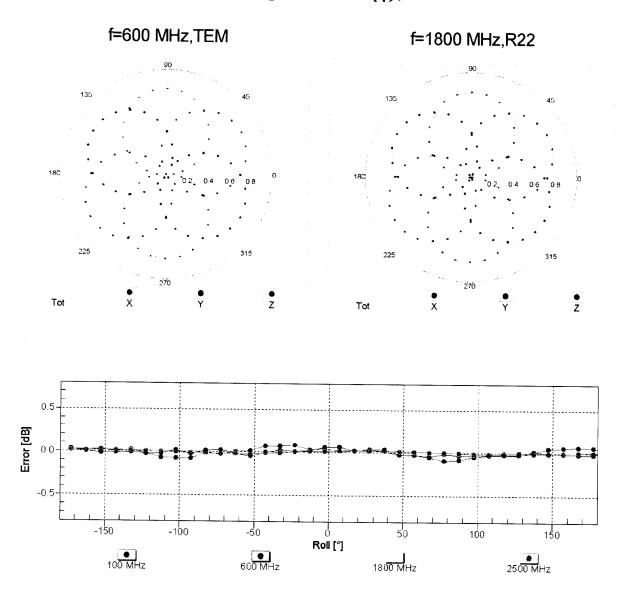
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

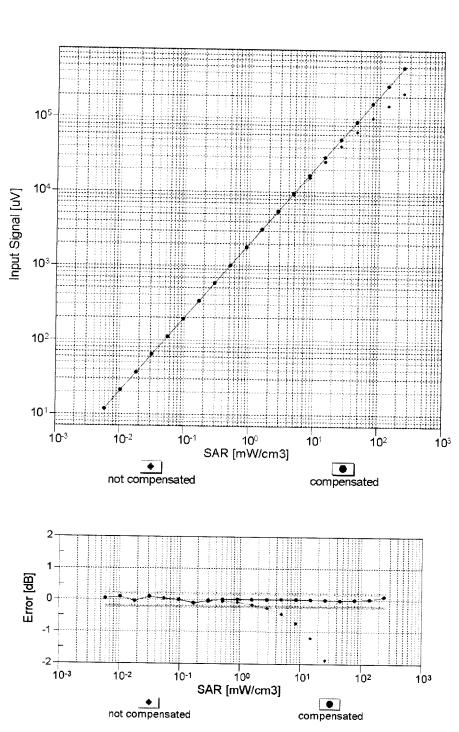

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	10.44	10.44	10.44	0.00	1.00	± 13.3 %
220	60.2	0.86	9.79	9.79	9.79	0.00	1.00	± 13.3 %
450	56.7	0.94	9.91	9.91	9.91	0.10	1.30	± 13.3 %
750	55.5	0.96	8.77	8.77	8.77	0.28	1.17	± 12.0 %
900	55.0	1.05	8.79	8.79	8.79	0.30	1.13	± 12.0 %
1750	53.4	1.49	7.32	7.32	7.32	0.17	1.41	± 12.0 %
1900	53.3	1.52	7.09	7.09	7.09	0.39	0.80	± 12.0 %
2300	52.9	1.81	7.02	7.02	7.02	0.17	0.81	± 12.0 %
2450	52.7	1.95	6.78	6.78	6.78	0.42	0.80	± 12.0 %
2600	52.5	2.16	6.67	6.67	6.67	0.31	0.80	± 12.0 %
5200	49.0	5.30	4.27	4.27	4.27	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.05	4.05	4.05	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.81	3.81	3.81	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.69	3.69	3.69	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.90	3.90	3.90	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

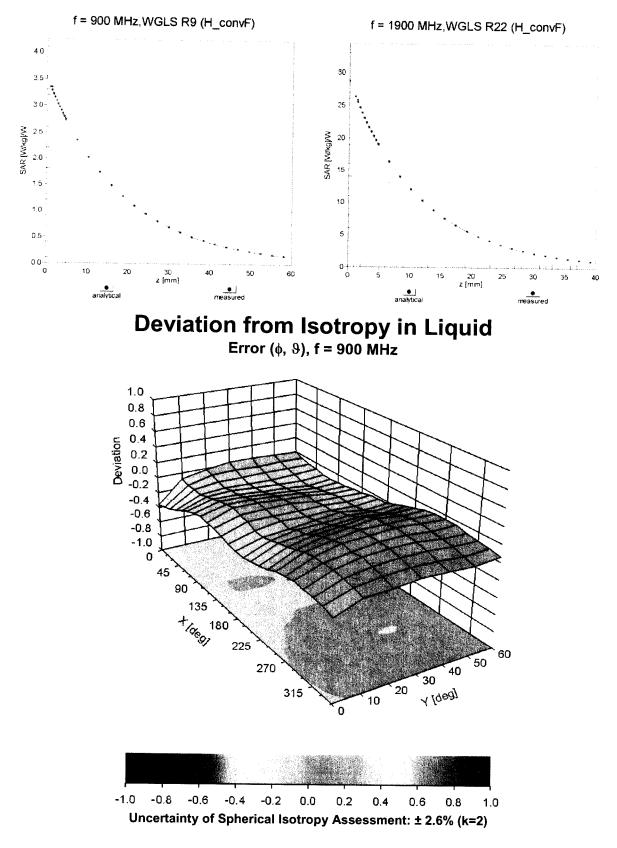
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	
Mechanical Surface Detection Mode	107.3
	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	
Probe Tip to Sensor X Calibration Point	2.5 mm
	1 mm
Probe Tip to Sensor Y Calibration Point	
Probe Tip to Sensor Z Calibration Point	
Recommended Measurement Distance from Surface	1 mm
	1.4 mm

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Jan16

Accreditation No.: SCS 0108

Client	RF Exposure Lab	Certificate No: EX3-3833_
CAL	IBRATION CERTIFICATE	

Object	EX3DV4 - SN:3833
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	January 27, 2016
	nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	ofe la
		an a	anna composition and a second a second a secon
Approved by:	Katja Pokovic	Technical Manager	Lett-
		9,99,999,999,99,999,999,99,99,99,99,99,	ana sa berananan seria seria ang seria ana ana ang seria ang seria ang seria ang seria ang seria seria seria s Seria seria seri
			•
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	Issued: January 28, 2016 ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
ϕ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3833

Calibrated:

Manufactured: November 7, 2011 January 27, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.49	0.35	± 10.1 %
DCP (mV) ^B	100.8	100.2	102.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊏] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	131.4	±2.5 %
		Y	0.0	0.0	1.0		134.5	
		Z	0.0	0.0	1.0		128.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

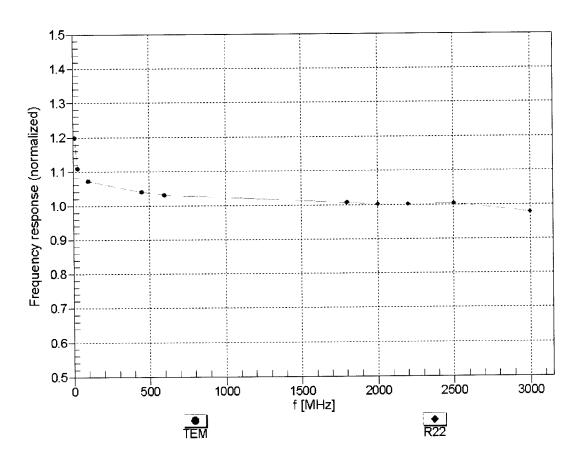
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.38	11.38	11.38	0.00	1.00	± 13.3 %
220	49.0	0.81	10.71	10.71	10.71	0.00	1.00	± 13.3 %
300	45.3	0.87	10.68	10.68	10.68	0.08	1.15	± 13.3 %
450	43.5	0.87	9.47	9.47	9.47	0.15	1.15	± 13.3 %
600	42.7	0.88	9.41	9.41	9.41	0.09	1.15	± 13.3 %
750	41.9	0.89	9.23	9.23	9.23	0.37	1.00	± 12.0 %
900	41.5	0.97	8.72	8.72	8.72	0.29	1.17	± 12.0 %
1640	40.3	1.29	7.85	7.85	7.85	0.41	0.88	± 12.0 %
1750	40.1	1.37	7.62	7.62	7.62	0.46	0.80	± 12.0 %
1900	40.0	1.40	7.27	7.27	7.27	0.45	0.80	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.39	0.91	± 12.0 %
5200	36.0	4.66	4.64	4.64	4.64	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.47	4.47	4.47	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.23	4.23	4.23	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.94	3.94	3.94	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.11	4.11	4.11	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

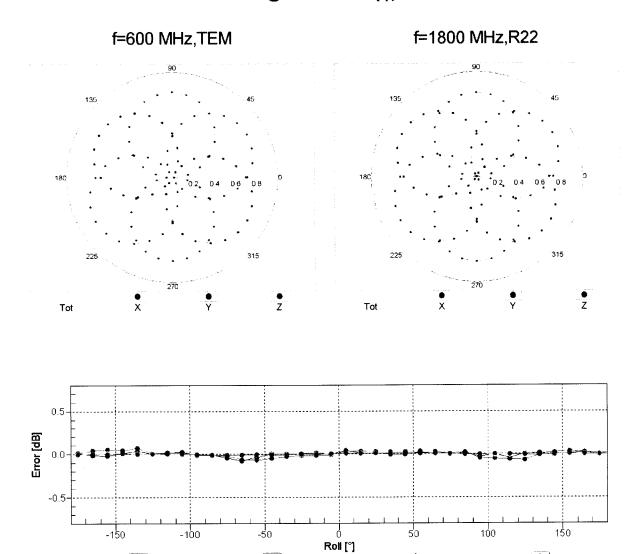
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.03	11.03	11.03	0.00	1.00	± 13.3 %
220	60.2	0.86	10.39	10.39	10.39	0.00	1. <u>00</u>	± 13.3 %
300	58.2	0.92	10.08	10.08	10.08	0.07	1.15	± 13.3 %
450	56.7	0.94	10.23	10.23	10.23	0.09	1.15	± 13.3 %
600	56.1	0.95	9.68	9.68	9.68	0.08	1.15	± 13.3 %
750	55.5	0.96	9.06	9.06	9.06	0.44	0.87	± 12.0 %
900	55.0	1.05	8.73	8.73	8.73	0.32	1.06	± 12.0 %
1640	53.8	1.40	7.77	7.77	7.77	0.38	0.82	± 12.0 %
1750	53.4	1.49	7.32	7.32	7.32	0.42	0.84	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.38	0.80	± 12.0 %
2450	52.7	1.95	6.87	6.87	6.87	0.40	0.85	± 12.0 %
5200	49.0	5.30	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5300	48.9	5.42	3.85	3.85	3.85	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.56	3.56	3.56	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.25	3.25	3.25	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.49	3.49	3.49	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

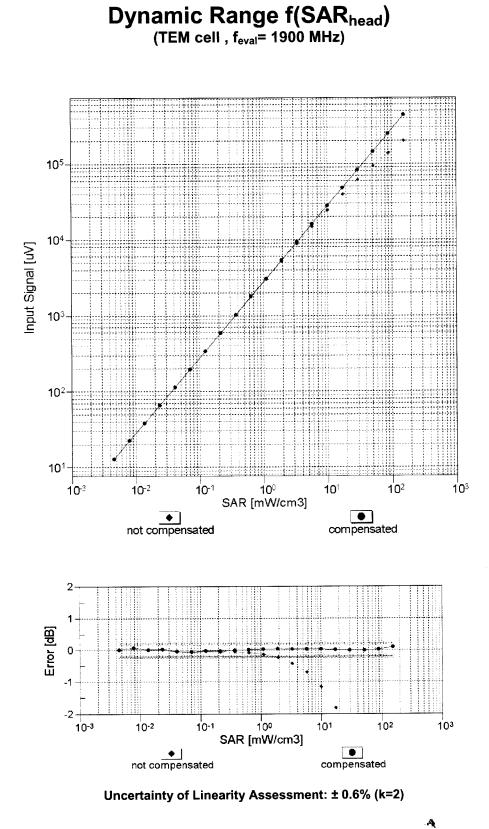
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

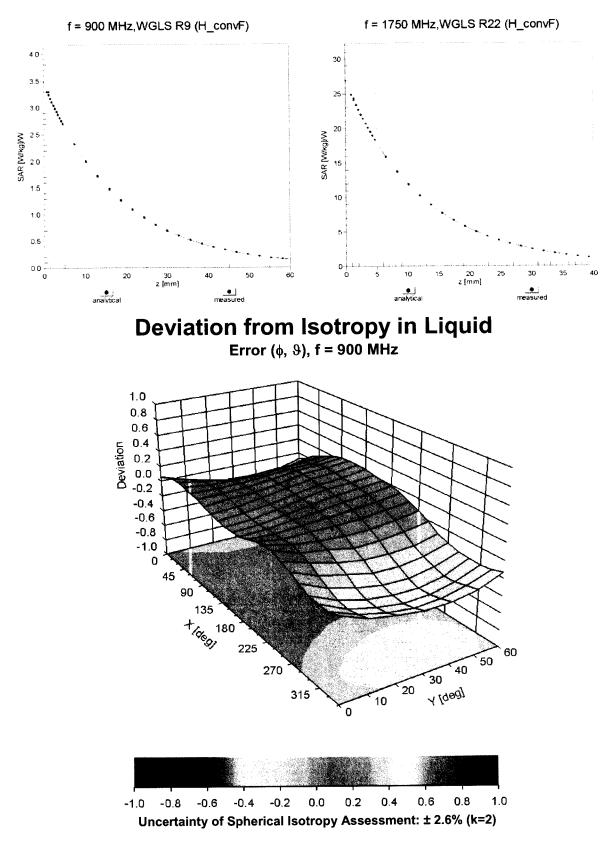

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

2500 MHz


Receiving Pattern (\phi), \vartheta = 0^{\circ}


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

1800 MHz

600 MHz

100 MHz

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	14.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Client RF Exposure Lab

Certificate No: D835V2-4d131_Aug15

Object	D835V2 - SN: 40	1131	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 10, 2015		
This calibration certificate docurr	nents the traceability to nation	ional standards, which realize the physical un	nits of measurements (SI).
	ertainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
	cted in the closed laborato		C and humidity < 70%.
All calibrations have been condu	cted in the closed laborato		C and humidity < 70%. Scheduled Calibration
Il calibrations have been conducation Equipment used (M& rimary Standards	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°(
Il calibrations have been condu alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	cted in the closed laborato TE critical for calibration)	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	Scheduled Calibration
all calibrations have been conducation Equipment used (M& <u>trimary Standards</u> <u>tower meter EPM-442A</u> <u>tower sensor HP 8481A</u> <u>tower sensor HP 8481A</u>	cted in the closed laborato TE critical for calibration) ID # GB37480704	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
all calibrations have been conducation Equipment used (M& trimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A deference 20 dB Attenuator	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-15 (No. 217-02131)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	· · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· · · · · · · · · · · · · · · · · · ·
Frequency	835 MHz ± 1 MHz	<u> </u>

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.23 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.01 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 1.6 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 3.8 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.394 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

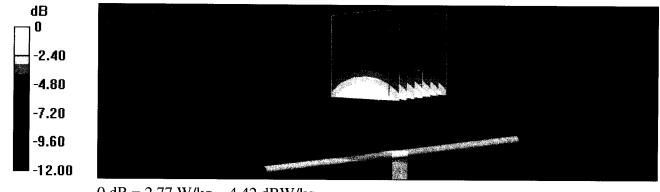
D835V2 SN: 4d131 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	-31.2		52.3		-1.6	
8/9/2016	-29.2	-6.4	51.3	-1.0	-1.8	-0.2
0/3/2010			SN: 4d131	- Body		
			SN: 4d131	- Body		
Date of Measurement	Return Loss (dB)		SN: 4d131	- Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
Date of	Return Loss	D835V2	Impedance		Impedance Imaginary (jΩ) -3.8	ΔΩ
Date of Measurement	Return Loss (dB)	D835V2	Impedance Real (Ω)		Imaginary (jΩ)	<u>ΔΩ</u> 0.0

DASY5 Validation Report for Head TSL

Date: 10.08.2015

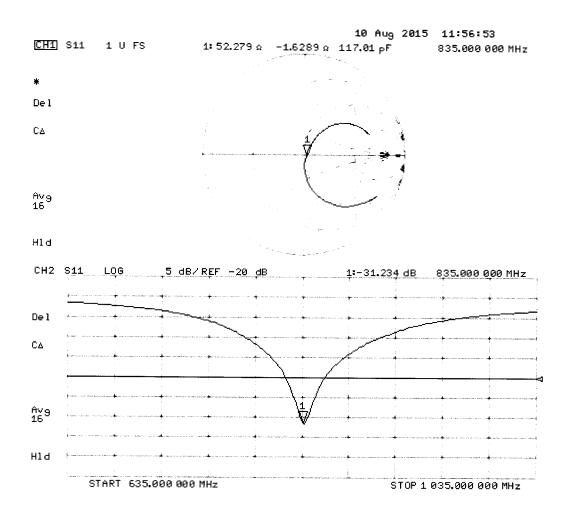
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

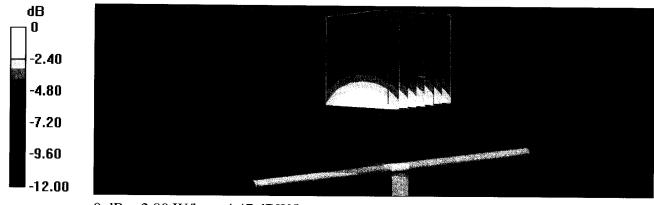
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2015

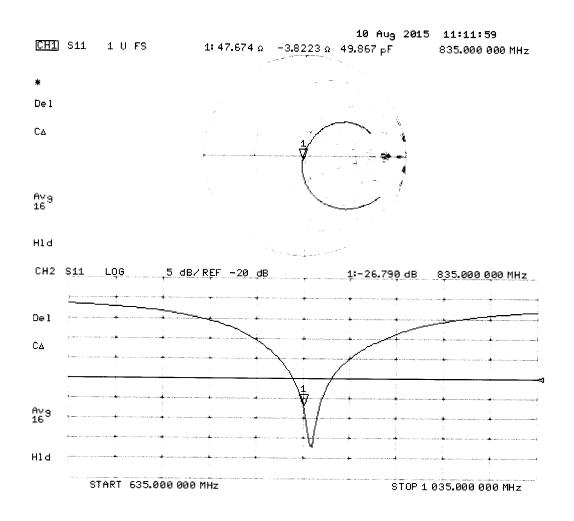
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.25 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.51 W/kg **SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg** Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

RF Exposure Lab

Client

Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swies Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d147 Aug15

CALIBRATION CERTIFICATE D1900V2 - SN:5d147 Object Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Scheduled Check Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician

Approved by:

Issued: August 13, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	u
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	41.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 6.2 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 6.5 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.193 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D1900V2 SN: 5d147 - Head							
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ	
8/13/2015	-23.5		53.1		6.2		
8/12/2016	-24.9	6.0	53.9	0.8	5.4	-0.8	
		D1900V	2 SN: 5d147	- Body			
Date of Measurement	Return Loss (dB)	D1900V2	2 SN: 5d147 Impedance Real (Ω)	- Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ	
	Return Loss		Impedance			ΔΩ	
Measurement	Return Loss (dB)		Impedance Real (Ω)		Imaginary (jΩ)	<u>ΔΩ</u> 0.4	

Certificate No: D1900V2-5d147 Aug15

Pane 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.08.2015

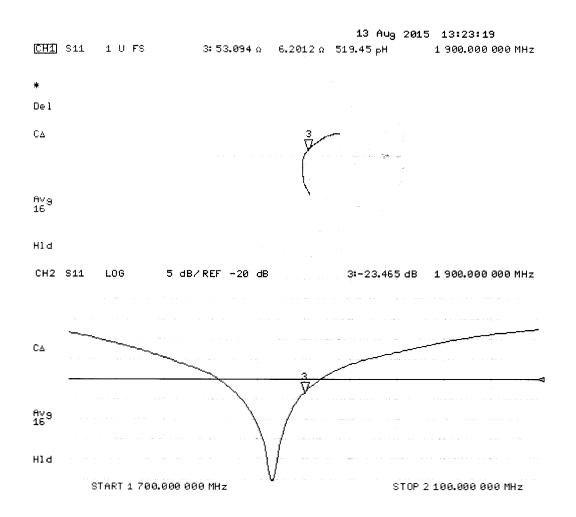
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

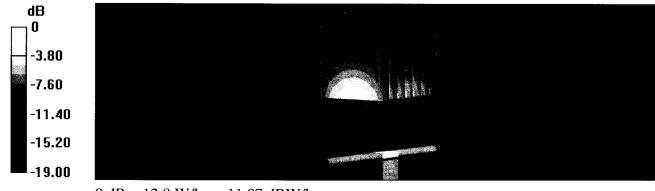
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2015

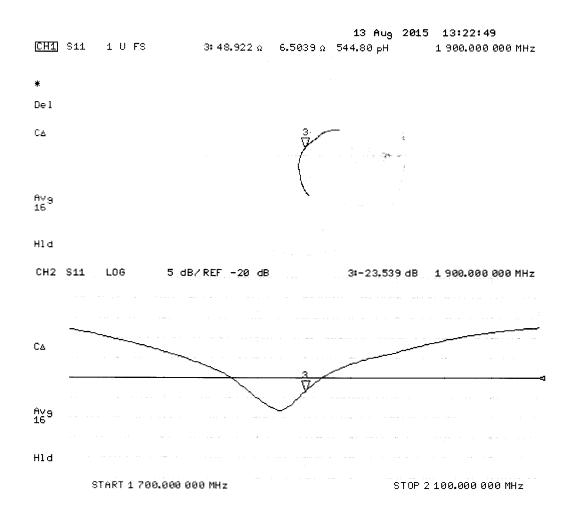
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.51 S/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Body TSL

Appendix F – Phantom Calibration Data Sheets

a

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG	
	Zeughausstrasse 43	
	CH-8004 Zürich	
	Switzerland	

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry	IT'IS CAD File (*)	First article,
	according to the CAD model.		Samples
Material thickness	Compliant with the requirements	2mm +/- 0.2mm in flat	First article,
of shell	according to the standards	and specific areas of	Samples,
		head section	TP-1314 ff.
Material thickness	Compliant with the requirements	6mm +/- 0.2mm at ERP	First article,
at ERP	according to the standards		All items
Material	Dielectric parameters for required	300 MHz – 6 GHz:	Material
parameters	frequencies	Relative permittivity < 5,	samples
		Loss tangent < 0.05	
Material resistivity	The material has been tested to be	DEGMBE based	Pre-series,
	compatible with the liquids defined in	simulating liquids	First article,
	the standards if handled and cleaned		Material
	according to the instructions.		samples
	Observe technical Note for material		
	compatibility.		
Sagging	Compliant with the requirements	< 1% typical < 0.8% if	Prototypes,
	according to the standards.	filled with 155mm of	Sample
	Sagging of the flat section when filled	HSL900 and without	testing
	with tissue simulating liquid.	DUT below	

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-2003
- [3] IEC 62209 Part I
- [4] FCC OET Bulletin 65, Supplement C, Edition 01-01
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Date

07.07.2005

a g e S <u>p</u>

Schmid & Pariner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone 1411245 9700 Fax 4411 245 9779 Info@epeag.com, http://www.speag.com

Signature / Stamp

Doc No 881 ~ QD 000 P40 C - F