

EMC Technologies Pty Ltd

ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042

Ph: + 613 9365 1000 Fax: + 613 9331 7455 email: sales@emctech.com.au

SAR Test Report

Report Number: M140907_R2 (Replacing M140907)

Evaluation of the SAR of Samsung Galaxy and Apple iPhones When Fitted With the Cellsafe Smart Chip

Tested For: Panasales Clearance Centre Pty Ltd

Date of Issue: 23 June 2016

This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document shall not be reproduced except in full.

1.0 GENERAL INFORMATION. 3 2.0 DESCRIPTION OF DEVICE. 4 2.1 Description of Test Sample 4 2.2 Test sample Accessories 4 2.2.1 Battery Types 4 2.3 Test Signal, Frequency and Output Power 4 2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 3 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Au
2.1 Description of Test Sample 4 2.2 Test sample Accessories 4 2.2.1 Battery Types 4 2.3 Test Signal, Frequency and Output Power 4 2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Touch Position* 11 7.1.1 "Touch Position* 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR Measurement Results for iPhone 5S<
2.2 Test sample Accessories 4 2.2.1 Battery Types 4 2.3 Test Signal, Frequency and Output Power 4 2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 17
2.2 Test sample Accessories 4 2.2.1 Battery Types 4 2.3 Test Signal, Frequency and Output Power 4 2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 17
2.2.1 Battery Types 4 2.3 Test Signal, Frequency and Output Power 4 2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2
2.3 Test Signal, Frequency and Output Power. 4 2.4 Conducted Power Measurements. 4 2.5 Battery Status. 4 2.6 Details of Test Laboratory. 5 2.6.1 Location. 5 2.6.2 Accreditations. 5 2.6.3 Environmental Factors. 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA. 6 3.1.1 Deviation from reference values. 6 3.1.2 Temperature and Humidity. 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5. 7 5.0 MEASUREMENT UNCERTAINTY. 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS. 10 7.0 SAR TEST METHOD. 11 7.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360. 11 8.0 SAR EVALUATION RESULTS. 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for Samsung Galaxy S4. 13 8.4 SAR Measurement Results for Samsung Galaxy S4. 13
2.4 Conducted Power Measurements 4 2.5 Battery Status 4 2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13
2.6 Details of Test Laboratory 5 2.6.1 Location 5 2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Description of the Test Positions (Head Sections) 11 7.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 5S 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14
2.6.1 Location
2.6.2 Accreditations 5 2.6.3 Environmental Factors 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 5S 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 15 APPENDIX A2 Test Setup Photographs 17 APPENDIX A3 Test Setup Photographs 18
2.6.3 Environmental Factors. 6 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 5S 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 15 APPENDIX A2 Test Setup Photographs 17 APPENDIX A3 Test Setup Photographs 18
3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA 6 3.1.1 Deviation from reference values 6 3.1.2 Temperature and Humidity 6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 7 5.0 MEASUREMENT UNCERTAINTY 8 6.0 EQUIPMENT LIST AND CALIBRATION DETAILS 10 7.0 SAR TEST METHOD 11 7.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 5S 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 15 APPENDIX A2 Test Setup Photographs 17 APPENDIX A3 Test Setup Photographs 18
3.1.1 Deviation from reference values 3.1.2 Temperature and Humidity 4.0 SAR MEASUREMENT PROCEDURE USING DASY5. 7.5.0 MEASUREMENT UNCERTAINTY. 8.6.0 EQUIPMENT LIST AND CALIBRATION DETAILS. 10.7.0 SAR TEST METHOD. 11.7.1 Description of the Test Positions (Head Sections). 11.7.1.1 "Touch Position". 11.7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360. 11.8.0 SAR EVALUATION RESULTS. 12.8.1 SAR Measurement Results for iPhone 5. 12.8.2 SAR Measurement Results for iPhone 5S. 13.3 SAR Measurement Results for Samsung Galaxy S4. 13.4 SAR Measurement Results for Samsung Galaxy S5. 13.9.0 CONCLUSION. 14.4 APPENDIX A1 Test Sample Photographs. 15.5 APPENDIX A2 Test Setup Photographs. 17.4 APPENDIX A3 Test Setup Photographs. 18.1 SAR Setup Photographs. 18.1 SAR Measurement Results Setup Photographs. 18.1 SAR Measurement Results Setup Photographs. 19.1 SAPPENDIX A3 Test Setup Photographs.
3.1.2 Temperature and Humidity
4.0 SAR MEASUREMENT PROCEDURE USING DASY5
5.0 MEASUREMENT UNCERTAINTY
6.0 EQUIPMENT LIST AND CALIBRATION DETAILS
7.0SAR TEST METHOD117.1Description of the Test Positions (Head Sections)117.1.1"Touch Position"117.2ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360118.0SAR EVALUATION RESULTS128.1SAR Measurement Results for iPhone 5128.2SAR Measurement Results for iPhone 5S128.3SAR Measurement Results for Samsung Galaxy S4138.4SAR Measurement Results for Samsung Galaxy S5139.0CONCLUSION14APPENDIX A1 Test Sample Photographs15APPENDIX A2 Test Setup Photographs17APPENDIX A3 Test Setup Photographs17
7.1 Description of the Test Positions (Head Sections) 11 7.1.1 "Touch Position" 11 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 55 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 15 APPENDIX A2 Test Setup Photographs 17 APPENDIX A3 Test Setup Photographs 18
7.1.1 "Touch Position"
7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 11 8.0 SAR EVALUATION RESULTS 12 8.1 SAR Measurement Results for iPhone 5 12 8.2 SAR Measurement Results for iPhone 5S 12 8.3 SAR Measurement Results for Samsung Galaxy S4 13 8.4 SAR Measurement Results for Samsung Galaxy S5 13 9.0 CONCLUSION 14 APPENDIX A1 Test Sample Photographs 15 APPENDIX A2 Test Setup Photographs 17 APPENDIX A3 Test Setup Photographs 18
8.0 SAR EVALUATION RESULTS
8.1 SAR Measurement Results for iPhone 5
8.2 SAR Measurement Results for iPhone 5S
8.3 SAR Measurement Results for Samsung Galaxy S4
8.4 SAR Measurement Results for Samsung Galaxy S5
9.0 CONCLUSION
APPENDIX A1 Test Sample Photographs
APPENDIX A2 Test Setup Photographs
APPENDIX A3 Test Setup Photographs18
APPENDIX B Plots Of The SAR Measurements
APPENDIX C DESCRIPTION OF SAR MEASUREMENT SYSTEM
Probe Positioning System
E-Field Probe Type and Performance
Data Acquisition Electronics
Device Holder for DASY5
Liquid Depth 15cm
Phantom Properties (Size, Shape, Shell Thickness, Tissue Material Properties)
APPENDIX D CALIBRATION DOCUMENTS

SAR Test Report M140907_R2

Evaluation of the SAR of Samsung Galaxy and Apple iPhones When Fitted With the Cellsafe Smart Chip

1.0 GENERAL INFORMATION

Test Samples: 1. Apple iPhone 5 an 5S with and without Smart Chip

2. Samsung Galaxy S4 and S5 with and without SmartChip.

Report No.: M140907_R2 Page 3 of 88

Device Category: Portable Transmitter **Test Device:** Production Unit

RF exposure Category: General Public/Unaware user

Tested for: Panasales Clearance Centre Pty Ltd **Address:** 14/1866 Princes Hwy Clayton

Contact: Aaron Leibovich **Phone:** 03 9596 9888

Email: aaron@panasales.com.au

Test Standard/s:

 Maximum Exposure Levels to Radiofrequency Fields – 3kHz to 300GHz, ARPANSA

 EN 62209-1:2006 Human exposure to radio frequency fields from hand-held and body-mounted devices-Human models, instrumentation and procedures.

Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range 300 MHz to 3 GHz)

Summary of Results: The Cellsafe Cellsafe Smart Chip was found to reduce SAR by 40.5 –

95.1% for the bands that were tested.

Test Dates: 8th September 2014 to 18th September 2014

Test Officer:

Mahan Ghassempouri

M. Shassenper

Authorised Signature:

Chris Zombolas Technical Director

2.0 DESCRIPTION OF DEVICE

2.1 Description of Test Sample

The Cellsafe Smart Chip is used with iPhone 5/5s and Samsung Galaxy S4/S5 mobiles phones. The mobile phones operate in the E-GSM, DCS and WCDMA UMTS) frequency bands and they have internal antennas. The Galaxy S4/S5 and the iPhone 5/5s were tested in accordance with EN62209-1 with and without the Smart Chip fitted while operating in the UMTS bands. Each configuration of mobile phone will be will be referred to as the Device Under Test (DUT) throughout this report. The phones were tested in the Touch position (right and left), with and without the Cellsafe Smart Chip and the SAR values compared. The Tilt and Body positions were not tested at the request of the client.

Report No.: M140907_R2 Page 4 of 88

Table: DUT (Device Under Test) Parameters

Operating Mode During Testing Operating Mode Production Sample

Modulation:

Antenna type

Applicable Head Configurations

:See Clause 2.3

: UMTS, E-GSM,

:GMSK for GSM/GPRS

:QPSK for UMTS

:Internal

: Touch Left Touch Right

2.2 Test sample Accessories

2.2.1 Battery Types

SAR measurements were performed with the standard iPhone 5/5s and Samsung Galaxy S4/S5 batteries.

2.3 Test Signal, Frequency and Output Power

The DUT was provided by Panasales Clearance Centre Pty Ltd. It was put into operation using a Rhodes & Schwarz Radio Communication Tester CMU200 in GSM and UMTS bands, The SAR level of the test sample was measured for the frequency bands as shown in the table below. Communication between the tester and the DUT was maintained by an air link.

Table: Test Frequencies and Power Classes

Band	Frequency MHz	Traffic Channel	Band Power Class	Nominal Power (dBm)
UMTS Band 1	1950.0	9750	3	24
UMTS Band 2	1880.0	9400	3	24
UMTS Band 5	836.6	4183	3	24
UMTS Band 8	897.6	2788	3	24

2.4 Conducted Power Measurements

The conducted power of the DUT was not measured because it did not have an accessible RF test port.

2.5 Battery Status

The DUT battery was fully charged prior to commencement of each measurement. The battery condition was monitored by measuring the RF power at a defined position inside the phantom before the commencement of each test and again after the completion of the test.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

2.6 Details of Test Laboratory

2.6.1 Location

EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042

Telephone: +61 3 9365 1000 +61 3 9331 7455 email: sales@emctech.com.au website: www.emctech.com.au

2.6.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

Last assessed in February 2014, next scheduled assessment in February 2017

EMC Technologies Pty Ltd is NATA accredited for the following RF Human Exposure standards:

AS/NZS 2772.2 2011: Radiofrequency Fields.

Part 2: Principles and methods of measurement and computation - 3kHz to

Report No.: M140907_R2 Page 5 of 88

300 GHz.

ACMA: Radiocommunications (Electromagnetic

Radiation — Human Exposure) Standard 2003 as amended

EN 50360: 2001 Product standard to demonstrate the compliance of Mobile Phones with the

basic restrictions related to human exposure to electromagnetic fields (300

MHz - 3 GHz

EN 62209-1:2006 Human exposure to radio frequency fields from hand-held and body-

mounted devices-Human models, instrumentation and procedures.

Part 1: Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range 300 MHz

to 3 GHz)

EN 62209-2:2010 Human Exposure to radio frequency fields from hand-held and body-

mounted wireless communication devices - Human models instrumentation

and procedures

Part 2: Procedure to determine the specific absorption rate (SAR) for

wireless communication devices used in close proximity to the human body

(frequency range of 30 MHz to 6 GHz

IEEE 1528: 2013 Recommended Practice for Determining the Peak Spatial-Average Specific

Absorption Rate (SAR) in the Human Head Due to Wireless

Communications Devices: Measurement Techniques.

Refer to NATA website www.nata.asn.au for the full scope of accreditation.

2.6.3 Environmental Factors

The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within 20 \pm 1 °C, the humidity was in the range 35% to 43%. See section 0 for measured temperature and humidity. The liquid parameters were measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. The noise floor of the DASY5 SAR measurement system using either the EX3DV4 or ET3DV6 E-field probes is less than $5\mu V$ in both air and liquid mediums.

Report No.: M140907_R2 Page 6 of 88

3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA

Prior to the SAR assessment, the system verification kit was used to verify that the DASY5 was operating within its specifications. The system check was performed at the frequencies listed below using the SPEAG calibrated dipoles. The reference dipoles are highly symmetric and matched at the centre frequency for the specified liquid and distance to the phantom. The accurate distance between the liquid surface and the dipole centre is achieved with a distance holder that snaps onto the dipole. System verification is performed by feeding a known power level into a reference dipole, set at a known distance from the phantom. The measured SAR is compared to the theoretically derived level, and must be within ±10%.

3.1.1 Deviation from reference values

The EN62209 reference SAR values are derived numerically for a given phantom and dipole construction, at the frequencies listed below. These reference SAR values are obtained from the EN62209 standard and are normalized to 1W.

The SPEAG calibration reference SAR value is the SAR validation result obtained in a specific dielectric liquid using the verification dipole during calibration. The measured ten-gram SAR should be within ±10% of the expected target reference values shown in table below.

Table: Deviation from reference validation values

Date	Frequency (MHz)	Measured SAR 10g (input power = 250mW)	Measured SAR 10g (Normalized to 1W)	SPEAG Calibration Reference SAR Value 10g (mW/g)	Deviation From SPEAG 10g (%)	EN62209 Reference SAR Value 10g (mW/g)	Deviation From EN62209 10g (%)
8 th September 2014	900	1.7	6.80	6.81	-0.15	6.99	-2.72
18 th September 2014	1950	5.25	21.00	21.3	-1.41	20.9	0.48

Note: All reference SAR values are normalized to 1W input power.

3.1.2 Temperature and Humidity

The humidity and dielectric/ambient temperatures are recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table: Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)
8 th September 2014	19.1	19.4	35
18 th September 2014	20.1	20.8	43

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

4.0 SAR MEASUREMENT PROCEDURE USING DASY5

x 10) are interpolated to calculate the averages.

The SAR evaluation was performed with the SPEAG DASY5 System (**Version 52**). A summary of the procedure follows:

a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the DUT. The SAR at this point is measured at the start of the test and then again at the end of the test.

Report No.: M140907_R2 Page 7 of 88

- b) The SAR distribution at the exposed side of the head or the flat section of the flat phantom is measured at a distance of 4.0 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 15 mm x 15 mm. The actual largest Area Scan has dimensions of 330 mm x 180 mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 4 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (i) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10
 - (ii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iii) The SAR value at the same location as in Step (a) is again measured and the power drift is recorded.

5.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the EN 62209-1 and EN62209-2 for both Handset SAR tests and Validation uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%.

Report No.: M140907_R2 Page 8 of 88

Table: Uncertainty Budget for DASY5 Version 52 – DUT SAR test

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	6	N	1.00	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	8
Boundary Effects	1	R	1.73	1	1	0.58	0.58	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	2.4	R	1.73	1	1	1.39	1.39	8
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	8
Response Time	0.8	R	1.73	1	1	0.46	0.46	8
Integration Time	2.6	R	1.73	1	1	1.50	1.50	8
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	8
Probe Positioner	0.4	R	1.73	1	1	0.23	0.23	8
Probe Positioning	2.9	R	1.73	1	1	1.67	1.67	8
Post Processing	2	R	1.73	1	1	1.15	1.15	8
Test Sample Related								
Power Scaling	0	R	1.73	1	1	0.00	0.00	8
Test Sample Positioning	2.9	N	1.00	1	1	2.90	2.90	145
Device Holder Uncertainty	3.6	N	1.00	1	1	3.60	3.60	5
Output Power Variation – SAR Drift Measurement	4.71	R	1.73	1	1	2.72	2.72	8
Phantom and Setup								
Phantom Uncertainty	7.6	R	1.73	1	1	4.39	4.39	8
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	8
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	8
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.64	0.43	1.60	1.08	8
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.6	0.49	1.50	1.23	∞
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	1.53	1.39	8
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.05	0.06	∞
Combined standard Uncertainty (u _c)						11.8	11.6	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		23.6	23.1	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 11.6\%$. The extended uncertainty (K = 2) was assessed to be $\pm 23.1\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Report No.: M140907_R2 Page 9 of 88

Table: Uncertainty Budget for DASY5 Version 52 - Validation

Error Description	Uncert. Value	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g ui	10g ui	vi
Measurement System								
Probe Calibration	6	N	1.00	1	1	6.00	6.00	∞
Axial Isotropy	4.7	R	1.73	1	1	2.71	2.71	8
Hemispherical Isotropy	9.6	R	1.73	0	0	0.00	0.00	∞
Boundary Effects	1	R	1.73	1	1	0.58	0.58	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	0	R	1.73	1	1	0.00	0.00	8
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	8
Response Time	0	R	1.73	1	1	0.00	0.00	8
Integration Time	0	R	1.73	1	1	0.00	0.00	8
RF Ambient Noise	1	R	1.73	1	1	0.58	0.58	8
RF Ambient Reflections	1	R	1.73	1	1	0.58	0.58	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	2	R	1.73	1	1	1.15	1.15	8
Dipole Related								
Deviation of exp. dipole	5.5	R	1.73	1	1	3.18	3.18	##
Dipole Axis to Liquid Dist.	2	R	1.73	1	1	1.15	1.15	##
Input power & SAR drift	3.40	R	1.73	1	1	1.96	1.96	∞
Phantom and Setup								
Phantom Uncertainty	4	R	1.73	1	1	2.31	2.31	∞
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	∞
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	∞
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.78	0.71	1.95	1.78	∞
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.26	0.26	0.65	0.65	∞
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	1.53	1.39	∞
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.05	0.06	∞
Combined standard Uncertainty (uc)								
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2				

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 9.9\%$. The extended uncertainty (K = 2) was assessed to be $\pm 19.8\%$ based on 95% confidence level. The uncertainty is not added to the Validation measurement result.

6.0 EQUIPMENT LIST AND CALIBRATION DETAILS

Table: SPEAG DASY5 Version 52

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?
Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	✓
Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	✓
SAM Phantom	SPEAG	N/A	1260	Not applicable	✓
SAM Phantom	SPEAG	N/A	1060	Not applicable	✓
Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	
Flat Phantom	AndreT	9.1	P 9.1	Not Applicable	
Flat Phantom	SPEAG	ELI 4.0	1101	Not Applicable	
Data Acquisition Electronics	SPEAG	DAE3 V1	359	06-June-2015	
Data Acquisition Electronics	SPEAG	DAE3 V1	442	10-Dec-2014	✓
Probe E-Field - Dummy	ımmy SPEAG DP1 N/A		N/A	Not applicable	
Probe E-Field	SPEAG	ET3DV6	1380	13-Dec-2014	✓
Probe E-Field	SPEAG	ET3DV6	1377	10-June-2015	
Probe E-Field	SPEAG	ES3DV6	3029	Not Used	
Probe E-Field	SPEAG	EX3DV4	3956	13-June-2015	
Probe E-Field	SPEAG	EX3DV4	3657	17-Dec-2014	
Validation Source 150 MHz	SPEAG	CLA150	4003	3-Dec-2016	
Antenna Dipole 900 MHz	SPEAG	D900V2	047	22-June-2015	✓
Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	20-June-2015	
Antenna Dipole 1950 MHz	SPEAG	D1950V3	1113	6-Dec -2015	✓
Antenna Dipole 2300 MHz	SPEAG	D2300V2	1032	22-Aug-2016	
Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	04-Dec-2015	
Antenna Dipole 2600 MHz	SPEAG	D2600V2	1044	13-Dec-2016	
Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	13-July-2013	
Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	16-Dec-2014	
RF Amplifier	EIN	603L	N/A	*In test	
RF Amplifier	Mini-Circuits	ZHL-42	N/A	*In test	✓
RF Amplifier	Mini-Circuits	ZVE-8G	N/A	*In test	
Synthesized signal generator	Hewlett Packard	ESG-D3000A	GB37420238	*In test	✓
RF Power Meter	Hewlett Packard	437B	3125012786	28-Aug-2014	✓
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481H	1545A01634	29-Aug-2014	✓
RF Power Meter	Rohde & Schwarz	NRP	101415	18-Sept-2014	
RF Power Sensor	Rohde & Schwarz	NRP - Z81	100174	18-Sept-2014	
RF Power Meter Dual	Hewlett Packard	435A	1733A05847	*In test	✓
RF Power Sensor	Hewlett Packard	8482A	2349A10114	*In test	✓
Network Analyser	Hewlett Packard	8714B	GB3510035	25-Sept-2014	
Network Analyser	Hewlett Packard	8753ES	JP39240130	6-Nov-2014	✓
Dual Directional Coupler	Hewlett Packard	778D	1144 04700	*In test	
Dual Directional Coupler	NARDA	3022	75453	*In test	✓

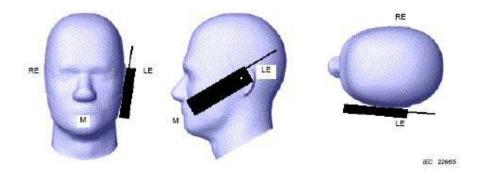
^{*} Calibrated during the test for the relevant parameters.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

7.0 SAR TEST METHOD

7.1 Description of the Test Positions (Head Sections)

The SAR measurements are performed on the left and right sides of the head in the Touch positions (with and without Cellsafe Smart Chip) using the centre frequency of the operating band selected by the customer. The configuration giving the maximum mass-averaged SAR is used to test the low-end and high-end frequencies of the transmitting band.


See Appendix A for photos of test positions.

Report No.: M140907_R2 Page 11 of 88

7.1.1 "Touch Position"

The device was positioned with the vertical centre line of the body of the device and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, the vertical centre line was aligned with the reference plane containing the three ear and mouth reference points. (Left Ear, Right Ear and Mouth). The centre of the earpiece was then aligned with the Right Ear and Left Ear.

The Mobile Phone was then moved towards the phantom with the earpiece aligned with the line between the Left Ear and the Right Ear, until the Mobile Phone just touched the ear. With the device maintained in the reference plane, and the Mobile Phone in contact with the ear, the bottom of the Mobile Phone was moved until the front side of the Mobile Phone was in contact with the cheek of the phantom, or until contact with the ear was lost.

7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360

Table: SAR Exposure Limits

Table: SAIT Exposure Limits							
Spatial Peak SAR Limits For							
Head and Partial-Body: 2.0 mW/g (averaged over any 10g cube of tissue)							
Hands, Wrists, Feet and Ankles:	4.0 mW/g (averaged over 10g cube of tissue)						
Spatial Average SAR Limits For							
Whole Body:	0.08 mW/g						

8.0 SAR EVALUATION RESULTS

The SAR values averaged over 10 g tissue masses were determined for the sample device for the Left and Right ear configurations of the phantom. The results for 850 MHz, 900 MHz, 1900 MHz and 1950 MHz UMTS bands are given in the tables below.

Report No.: M140907_R2 Page 12 of 88

The plots with the corresponding SAR distributions are contained in Appendix B of this report.

8.1 SAR Measurement Results for iPhone 5

Table: SAR Measurement Results - UMTS 850MHz

Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 41.5 ±5% 39.4 to 43.6)	σ (target 0.90 ±5% 0.86 to 0.95)
Touch Left with Chip	1	WCDMA - UMTS	4183	836.6	0.028	-0.13	40.49	0.8791
Touch Right with Chip	2	WCDMA - UMTS	4183	836.6	0.027	-0.14	40.49	0.8791
Touch Left without Chip	3	WCDMA - UMTS	4183	836.6	0.470	-0.13	40.49	0.8791
Touch Right without Chip	4	WCDMA - UMTS	4183	836.6	0.431	-0.02	40.49	0.8791
System Check	5	CW	1	900	1.7	0	39.72	0.9397

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

Table: SAR Measurement Results - UMTS 1900MHz

Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 40.0 ±5% 38.0 to 42.0)	σ (target 1.40 ±5% 1.33 to 1.47)
Touch Right with Chip	6	WCDMA - UMTS	9400	1880	0.403	-0.18	40.81	1.368
Touch Left with Chip	7	WCDMA - UMTS	9400	1880	0.250	-0.02	40.81	1.368
Touch Right without Chip	8	WCDMA - UMTS	9400	1880	0.763	-0.17	40.81	1.368
Touch Left without Chip	9	WCDMA - UMTS	9400	1880	0.420	-0.06	40.81	1.368
System Check	10	CW	1	1950	5.25	0.05	40.67	1.416

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

8.2 SAR Measurement Results for iPhone 5S

Table: SAR Measurement Results - UMTS 900MHz

Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 41.5 ±5% 39.4 to 43.6)	σ (target 0.97 ±5% 0.92 to 1.02)	
Touch Left with Chip	11	WCDMA - UMTS	2788	897.6	0.035	-0.2	39.74	0.9377	
Touch Right with Chip	12	WCDMA - UMTS	2788	897.6	0.022	0.02	39.74	0.9377	
Touch Left without Chip	13	WCDMA - UMTS	2788	897.6	0.495	-0.15	39.74	0.9377	
Touch Right without Chip	14	WCDMA - UMTS	2788	897.6	0.448	0.2	39.74	0.9377	

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

Table: SAR Measurement Results - UMTS 2100MHz

Report No.: M140907_R2 Page 13 of 88

Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 40.0 ±5% 38.0 to 42.0)	σ (target 1.40 ±5% 1.33 to 1.47)
Touch Left with Chip	15	WCDMA - UMTS	9750	1950	0.046	0.11	40.67	1.416
Touch Right with Chip	16	WCDMA - UMTS	9750	1950	0.122	-0.19	40.67	1.416
Touch Left without Chip	17	WCDMA - UMTS	9750	1950	0.472	0.12	40.67	1.416
Touch Right without Chip	18	WCDMA - UMTS	9750	1950	0.775	0.07	40.67	1.416

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

8.3 SAR Measurement Results for Samsung Galaxy S4

Table: SAR Measurement Results - UMTS 1900MHz

Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 40.0 ±5% 38.0 to 42.0)	σ (target 1.40 ±5% 1.33 to 1.47)
Touch Left with Chip	19	WCDMA - UMTS	9400	1880	0.031	-0.13	40.81	1.368
Touch Right with Chip	20	WCDMA - UMTS	9400	1880	0.019	0.18	40.81	1.368
Touch Left without Chip	21	WCDMA - UMTS	9400	1880	0.306	-0.1	40.81	1.368
Touch Right without Chip	22	WCDMA - UMTS	9400	1880	0.176	0.09	40.81	1.368

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

Table: SAR Measurement Results – UMTS 2100MHz

Tablet Of it modelies to the Court of the Co									
Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 40.0 ±5% 38.0 to 42.0)	σ (target 1.40 ±5% 1.33 to 1.47)	
Touch Left with Chip	23	WCDMA - UMTS	9750	1950	0.025	-0.04	40.67	1.416	
Touch Right with Chip	24	WCDMA - UMTS	9750	1950	0.011	0.07	40.67	1.416	
Touch Left without Chip	25	WCDMA - UMTS	9750	1950	0.322	0.15	40.67	1.416	
Touch Right without Chip	26	WCDMA - UMTS	9750	1950	0.162	-0.05	40.67	1.416	

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

8.4 SAR Measurement Results for Samsung Galaxy S5

Table: SAR Measurement Results – UMTS 900MHz

Test Position	Plot	Test Mode	Test	Test	SAR	Drift	∈r	σ
	No.		Ch.	Freq. (MHz)	(10g) mW/g	(dB)	(target 41.5 ±5% 39.4 to 43.6)	(target 0.97 ±5% 0.92 to 1.02)
Touch Left with chip	27	WCDMA - UMTS	2788	897.6	0.219	-0.01	41.5	0.97
Touch Right with chip	28	WCDMA - UMTS	2788	897.6	0.188	-0.05	41.5	0.97
Touch Left without chip	29	WCDMA - UMTS	2788	897.6	0.411	0.06	41.5	0.97
Touch Right without chip	30	WCDMA - UMTS	2788	897.6	0.321	0.02	41.5	0.97

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

Table: SAR Measurement Results - UMTS 2100MHz

Table: OATI Measurement Hesuits - OM 10 2 100M 12									
Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (10g) mW/g	Drift (dB)	∈r (target 40.0 ±5% 38.0 to 42.0)	σ (target 1.40 ±5% 1.33 to 1.47)	
Touch Left with chip	31	WCDMA - UMTS	9750	1950	0.068	0.15	40.67	1.416	
Touch Right with chip	32	WCDMA - UMTS	9750	1950	0.040	0.18	40.67	1.416	
Touch Left without chip	33	WCDMA - UMTS	9750	1950	0.264	-0.04	40.67	1.416	
Touch Right without chip	34	WCDMA - UMTS	9750	1950	0.143	0.04	40.67	1.416	

Note: The uncertainty of the system (± 23.1%) has not been added to the result.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

9.0 CONCLUSION

Device	Band	Test Position	Test Ch.	Test Freq. (MHz)	SAR with chip (10g) mW/g	SAR without chip (10g) mW/g	Δ SAR	Δ SAR Percentage (%)
	UMTS-850MHz	Touch Left	4183	836.6	0.028	0.470	0.442	94.0
iPhone 5	OIVITS-850IVITZ	Touch Right	4183	836.6	0.027	0.431	0.404	93.7
iPilone 5	UMTS-1900MHz	Touch Left	9400	1880	0.250	0.420	0.17	40.5
	OIVITS-1900IVITZ	Touch Right	9400	1880	0.403	0.763	0.36	47.2
	LINATE COONALI-	Touch Left	2788	897.6	0.035	0.495	0.46	92.9
iPhone 5S	UMTS-900MHz	Touch Right	2788	897.6	0.022	0.448	0.426	95.1
iPilofie 55	LINATE 2400NALI-	Touch Left	9750	1950	0.046	0.472	0.426	90.3
	UMTS-2100MHz	Touch Right	9750	1950	0.122	0.775	0.653	84.3
	LINATE 1000NALI-	Touch Left	9400	1880	0.031	0.306	0.275	89.9
Samsung Galaxy UNITS-	UMTS-1900MHz	Touch Right	9400	1880	0.019	0.176	0.157	89.2
S4	UMTS-2100MHz	Touch Left	9750	1950	0.025	0.322	0.297	92.2
		Touch Right	9750	1950	0.011	0.162	0.151	93.2
	UMTS-900MHz	Touch Left	2788	897.6	0.219	0.411	0.192	46.7
Samsung Galaxy		Touch Right	2788	897.6	0.188	0.321	0.133	41.4
S 5	LINATE 2400N411-	Touch Left	9750	1950	0.068	0.264	0.196	74.2
	UMTS-2100MHz	Touch Right	9750	1950	0.040	0.143	0.103	72.0

The Cellsafe Smart Chip was tested in Samsung Galaxy S4/S5 and Apple iPhone 5/5s for the Touch position at the Head, Left and Right Ear in the centre frequency of each of the bands tested.

The Smart Chip resulted in a SAR reduction ranging from 40.5% to 95.1%. The Network Performance of each phone was not checked.

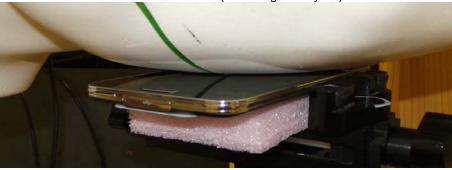
APPENDIX A1 Test Sample Photographs

DUT (Cellsafe Smart Chip)

DUT (Cellsafe Smart Chip)

DUT (Cellsafe Smart Chip)

APPENDIX A2 Test Setup Photographs


Touch Left Position Touch Left Position (iPhone 5S)

Touch Left Position (iPhone 5)

Touch Left Position (Samsung Galaxy S5)

Touch Left Position (Samsung Galaxy S4)

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

APPENDIX A3 Test Setup Photographs

Touch Right Position

Touch Right Position

Touch Right Position

Touch Right Position

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Report No.: M140907_R2 Page 19 of 88

Test Lab: EMCTech Test File: M140907 - 850 MHz 3G -Antenna 1 - w chip.da52:0

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=836.5 MHz; σ = 0.88 S/m; ε_r = 40.5; ρ = 1000.0g/cm³

Phantom section: Left Section

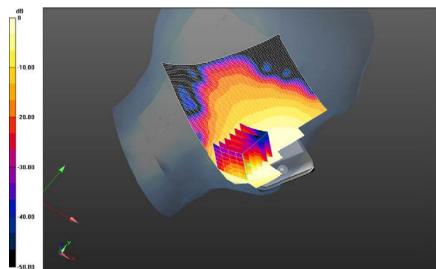
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12: Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.048 W/kg

Touch Left/Channel 4183 Test/Zoom Scan (21x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 6.287 V/m; Power Drift = -0.13 dB

Averaged SAR: SAR(1g) = 0.047 W/kg; SAR(10g) = 0.028 W/kg

Maximum value of SAR (interpolated) = 0.069 W/kg

0 dB = 0.0478 W/kg = -13.21 dBW/kg

Test File: M140907 - 850 MHz 3G -Antenna 1 - w chip.da52:1

Report No.: M140907_R2 Page 20 of 88

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=836.5 MHz; σ = 0.88 S/m; ϵ_r = 40.5; ρ = 1000.0g/cm³

Phantom section: Right Section

DASY Configuration:

Test Lab: EMCTech

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;

Maximum value of SAR (interpolated) = 0.045 W/kg

Touch Right/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 5.935 V/m; Power Drift = -0.14 dB

Averaged SAR: SAR(1g) = 0.043 W/kg; SAR(10g) = 0.027 W/kg

Maximum value of SAR (interpolated) = 0.059 W/kg

0 dB = 0.0445 W/kq = -13.52 dBW/kq

Report No.: M140907_R2 Page 21 of 88

Test Lab: EMCTech Test File: M140907 - 850 MHz 3G -Antenna 1 - wo chip.da52:0

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=836.5 MHz; σ = 0.88 S/m; ε_r = 40.5; ρ = 1000.0g/cm³

Phantom section: Left Section

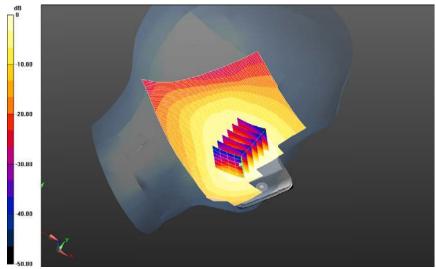
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.615 W/kg

Touch Left/Channel 4183 Test/Zoom Scan (21x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 27.994 V/m; Power Drift = -0.13 dB

Averaged SAR: SAR(1g) = 0.633 W/kg; SAR(10g) = 0.470 W/kg

Maximum value of SAR (interpolated) = 0.713 W/kg

0 dB = 0.615 W/kg = -2.11 dBW/kg

Test Lab: EMCTech Test File: M140907 - 850 MHz 3G -Antenna 1 - wo chip.da52:1

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=836.5 MHz; σ = 0.88 S/m; ε_r = 40.5; ρ = 1000.0g/cm³

Phantom section: Right Section

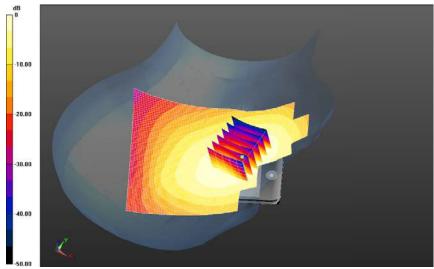
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.587 W/kg

Touch Right/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 26.154 V/m; Power Drift = -0.02 dB

Averaged SAR: SAR(1g) = 0.595 W/kg; SAR(10g) = 0.431 W/kg

Maximum value of SAR (interpolated) = 0.764 W/kg

0 dB = 0.587 W/kg = -2.32 dBW/kg

Test Lab: EMCTech Test File: M140907 - 850 MHz 3G -Antenna 1 - wo chip.da52:2

DUT Name: Dipole 900 MHz, Type: DV900V2, Serial: 047

Configuration: System Check

Communication System: 0 - CW; Communication System Band: 900 MHz; Frequency: 900.0 MHz,

Communication System PAR: 0.00 dB; PMF: 0.00; Duty Cycle: 1:1.00

Medium Parameters used: f=900 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 39.7$; $\rho = 1000.0$ g/cm³

Phantom section: Flat Section

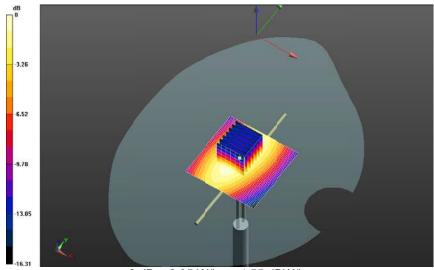
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

System Check/Channel 1 Test/Area Scan (51x51x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum


value of SAR (interpolated) = 2.850 W/kg

System Check/Channel 1 Test/Zoom Scan (31x31x36)/Cube 0: Interpolated grid: dx=1.0 mm, dy=1.0

mm, dz=1.0 mm; Reference Value = 57.409 V/m; **Power Drift = 0.00 dB**

Averaged SAR: SAR(1g) = 2.630 W/kg; SAR(10g) = 1.700 W/kg

Maximum value of SAR (interpolated) = 3.900 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Test Lab: EMCTech Test File: M140907-2100-1900 MHz 3G Antenna 1-w chip-retest.da52:2

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Right 1900 band

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz;

Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

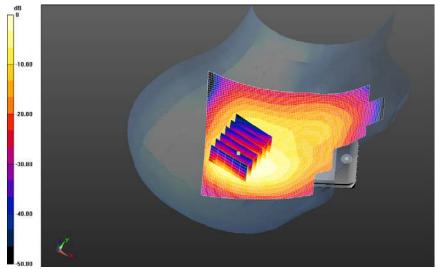
Phantom section: Right Section

DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)


Touch Right 1900 band/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.893 W/kg

Touch Right 1900 band/Channel 9400 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 6.199 V/m; Power Drift = -0.18 dB

Averaged SAR: SAR(1g) = 0.793 W/kg; SAR(10g) = 0.403 W/kg

Maximum value of SAR (interpolated) = 1.630 W/kg

0 dB = 0.893 W/kg = -0.49 dBW/kg

Test File: M140907-2100-1900 MHz 3G Antenna 1-w chip-retest.da52:3 Test Lab: EMCTech

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Left 1900 band

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Left Section

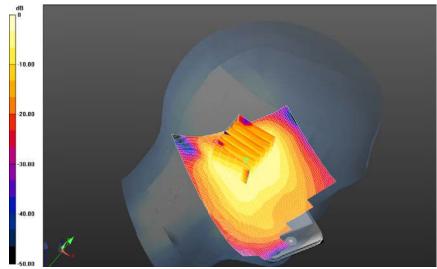
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left 1900 band/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5


mm; Maximum value of SAR (interpolated) = 0.727 W/kg

Touch Left 1900 band/Channel 9400 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 5.814 V/m; Power Drift = -0.02 dB

Averaged SAR: SAR(1g) = 0.505 W/kg; SAR(10g) = 0.250 W/kg

Maximum value of SAR (interpolated) = 0.989 W/kg

0 dB = 0.727 W/kg = -1.39 dBW/kg

Report No.: M140907_R2 Page 26 of 88

Test File: M140907-2100-1900 MHz 3G Antenna 1-wo chip-retest.da52:2

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Right 1900 band

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Right Section

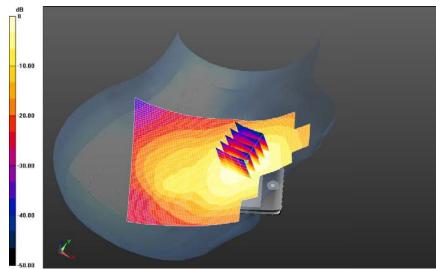
DASY Configuration:

Test Lab: EMCTech

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)


Touch Right 1900 band/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 1.350 W/kg

Touch Right 1900 band/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 28.082 V/m; Power Drift = -0.17 dB

Averaged SAR: SAR(1g) = 1.260 W/kg; SAR(10g) = 0.763 W/kg

Maximum value of SAR (interpolated) = 1.830 W/kg

0 dB = 1.35 W/kg = 1.32 dBW/kg

Test File: M140907-2100-1900 MHz 3G Antenna 1-wo chip-retest.da52:3 Test Lab: EMCTech

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5, Serial: IMEI: 013734001602985

Configuration: Touch Left 1900 band

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Left Section

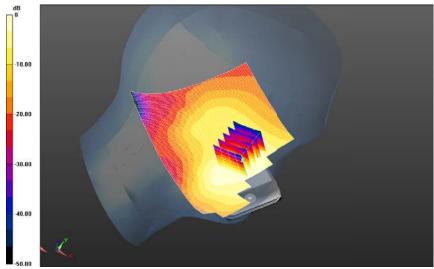
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left 1900 band/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5


mm; Maximum value of SAR (interpolated) = 0.730 W/kg

Touch Left 1900 band/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 21.663 V/m; Power Drift = -0.06 dB

Averaged SAR: SAR(1g) = 0.637 W/kg; SAR(10g) = 0.420 W/kg

Maximum value of SAR (interpolated) = 0.856 W/kg

0 dB = 0.730 W/kg = -1.36 dBW/kg

Test File: M140907-2100-1900 MHz 3G Antenna 1-w chip-retest.da52:4

DUT Name: Dipole 1950 MHz, Type: DV1950V3, Serial: 1113

Configuration: System Check

Communication System: 0 - CW; Communication System Band: 1950 MHz; Frequency: 1950 MHz,

Communication System PAR: 0.00 dB; PMF: 0.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Flat Section

DASY Configuration:

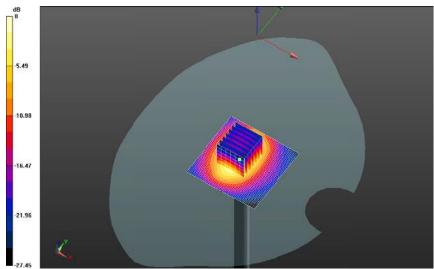
Test Lab: EMCTech

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

System Check/Channel 1 Test/Area Scan (51x51x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum


value of SAR (interpolated) = 12.500 W/kg

System Check/Channel 1 Test/Zoom Scan (31x31x36)/Cube 0: Interpolated grid: dx=1.0 mm, dy=1.0

mm, dz=1.0 mm; Reference Value = 94.870 V/m; Power Drift = 0.05 dB

Averaged SAR: SAR(1g) = 10.200 W/kg; SAR(10g) = 5.250 W/kg

Maximum value of SAR (interpolated) = 18.200 W/kg

0 dB = 12.5 W/kg = 10.98 dBW/kg

Test Lab: EMCTech Test File: M140907 - 900 MHz 3G -Antenna 1 - w chip.da52:0

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 29 of 88

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=897.5 MHz; σ = 0.94 S/m; ϵ_r = 39.7; ρ = 1000.0g/cm³

Phantom section: Left Section

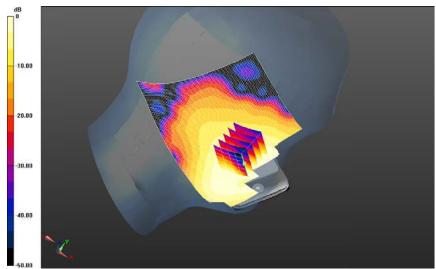
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.050 W/kg

Touch Left/Channel 2788 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 6.905 V/m; Power Drift = -0.20 dB

Averaged SAR: SAR(1g) = 0.050 W/kg; SAR(10g) = 0.035 W/kg

Maximum value of SAR (interpolated) = 0.067 W/kg

0 dB = 0.0496 W/kg = -13.05 dBW/kg

Test Lab: EMCTech Test File: M140907 - 900 MHz 3G -Antenna 1 - w chip.da52:1

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 30 of 88

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=897.5 MHz; σ = 0.94 S/m; ε_r = 39.7; ρ = 1000.0g/cm³

Phantom section: Right Section

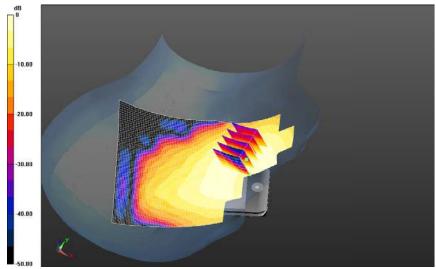
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.035 W/kg

Touch Right/Channel 2788 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 5.215 V/m; Power Drift = 0.02 dB

Averaged SAR: SAR(1g) = 0.034 W/kg; SAR(10g) = 0.022 W/kg

Maximum value of SAR (interpolated) = 0.045 W/kg

0 dB = 0.0349 W/kg = -14.57 dBW/kg

safe Smart Chip Report No.: M140907_R2 Page 31 of 88

Test Lab: EMCTech Test File: M140907 - 900 MHz 3G -Antenna 1 - wo chip.da52:0

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=897.5 MHz; σ = 0.94 S/m; ϵ_r = 39.7; ρ = 1000.0g/cm³

Phantom section: Left Section

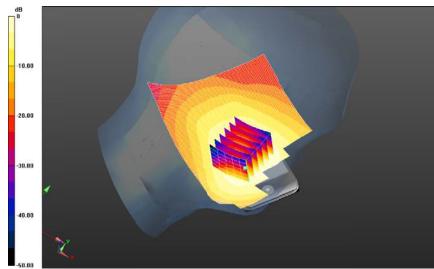
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.688 W/kg

Touch Left/Channel 2788 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 28.400 V/m; Power Drift = -0.15 dB

Averaged SAR: SAR(1g) = 0.671 W/kg; SAR(10g) = 0.495 W/kg

Maximum value of SAR (interpolated) = 0.775 W/kg

0 dB = 0.688 W/kg = -1.63 dBW/kg

Test Lab: EMCTech Test File: M140907 - 900 MHz 3G -Antenna 1 - wo chip.da52:1

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 32 of 88

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=897.5 MHz; σ = 0.94 S/m; ε_r = 39.7; ρ = 1000.0g/cm³

Phantom section: Right Section

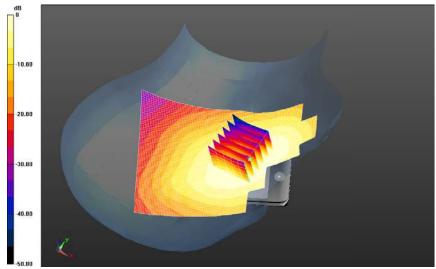
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.634 W/kg

Touch Right/Channel 2788 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 8.542 V/m; Power Drift = 0.20 dB

Averaged SAR: SAR(1g) = 0.629 W/kg; SAR(10g) = 0.448 W/kg

Maximum value of SAR (interpolated) = 0.819 W/kg

0 dB = 0.634 W/kg = -1.98 dBW/kg

Test Lab: EMCTech Test File: M140907- 2100 MHz 3G Antenna 1-w chip.da52:0

Report No.: M140907_R2 Page 33 of 88

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

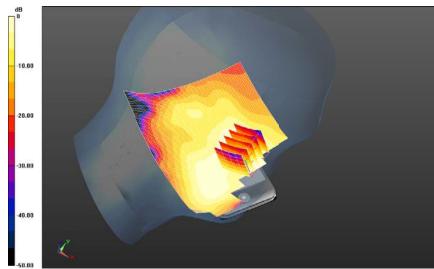
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.079 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 6.245 V/m; Power Drift = 0.11 dB

Averaged SAR: SAR(1g) = 0.075 W/kg; SAR(10g) = 0.046 W/kg

Maximum value of SAR (interpolated) = 0.107 W/kg

0 dB = 0.0792 W/kg = -11.01 dBW/kg

Test Lab: EMCTech Test File: M140907- 2100 MHz 3G Antenna 1-w chip.da52:1

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 34 of 88

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

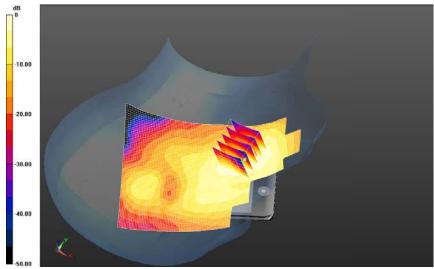
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.233 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 8.080 V/m; Power Drift = -0.19 dB

Averaged SAR: SAR(1g) = 0.212 W/kg; SAR(10g) = 0.122 W/kg

Maximum value of SAR (interpolated) = 0.320 W/kg

0 dB = 0.233 W/kg = -6.32 dBW/kg

Test Lab: EMCTech Test File: M140907- 2100 MHz 3G Antenna 1-wo chip.da52:0

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 35 of 88

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

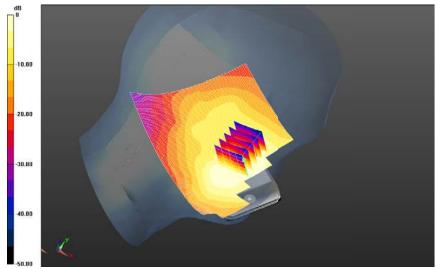
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.789 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 22.892 V/m; Power Drift = 0.12 dB

Averaged SAR: SAR(1g) = 0.720 W/kg; SAR(10g) = 0.472 W/kg

Maximum value of SAR (interpolated) = 0.991 W/kg

0 dB = 0.789 W/kg = -1.03 dBW/kg

Test Lab: EMCTech Test File: M140907- 2100 MHz 3G Antenna 1-wo chip.da52:1

DUT Name: Apple GSM-3G Mobile Phone, Type: iPhone 5S, Serial: IMEI: 351981067585212

Report No.: M140907_R2 Page 36 of 88

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

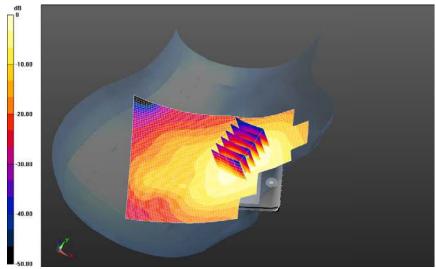
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 1.400 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 26.798 V/m; Power Drift = 0.07 dB

Averaged SAR: SAR(1g) = 1.300 W/kg; SAR(10g) = 0.775 W/kg

Maximum value of SAR (interpolated) = 1.960 W/kg

0 dB = 1.40 W/kg = 1.45 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G w chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 37 of 88

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Left Section

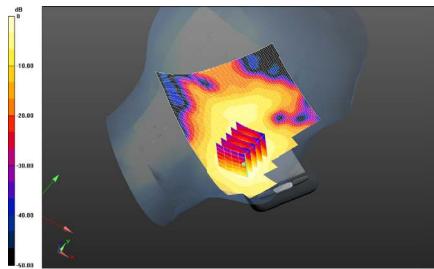
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.055 W/kg

Touch Left/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 5.137 V/m; Power Drift = -0.13 dB

Averaged SAR: SAR(1g) = 0.054 W/kg; SAR(10g) = 0.031 W/kg

Maximum value of SAR (interpolated) = 0.087 W/kg

0 dB = 0.0550 W/kg = -12.59 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G w chip.da52:1

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 38 of 88

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Right Section

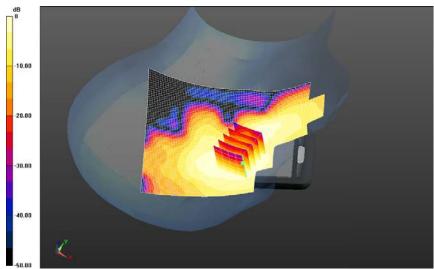
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.034 W/kg

Touch Right/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 3.932 V/m; Power Drift = 0.18 dB

Averaged SAR: SAR(1g) = 0.032 W/kg; SAR(10g) = 0.019 W/kg

Maximum value of SAR (interpolated) = 0.050 W/kg

0 dB = 0.0343 W/kg = -14.64 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G wo chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 39 of 88

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Left Section

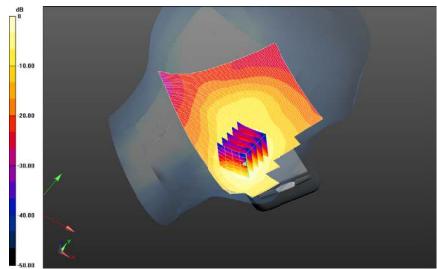
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.574 W/kg

Touch Left/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 16.326 V/m; Power Drift = -0.10 dB

Averaged SAR: SAR(1g) = 0.506 W/kg; SAR(10g) = 0.306 W/kg

Maximum value of SAR (interpolated) = 0.758 W/kg

0 dB = 0.574 W/kg = -2.41 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G wo chip.da52:1

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS (0); Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 40 of 88

Medium Parameters used: f=1880 MHz; σ = 1.37 S/m; ε_r = 40.8; ρ = 1000.0g/cm³

Phantom section: Right Section

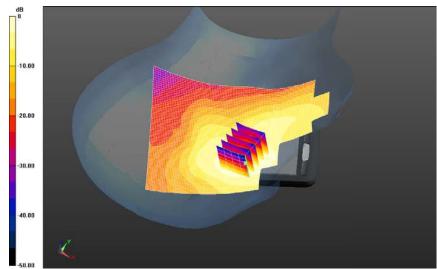
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.04,5.04,5.04); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.303 W/kg

Touch Right/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 11.126 V/m; Power Drift = 0.09 dB

Averaged SAR: SAR(1g) = 0.283 W/kg; SAR(10g) = 0.176 W/kg

Maximum value of SAR (interpolated) = 0.407 W/kg

0 dB = 0.303 W/kg = -5.19 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G w chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 41 of 88

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

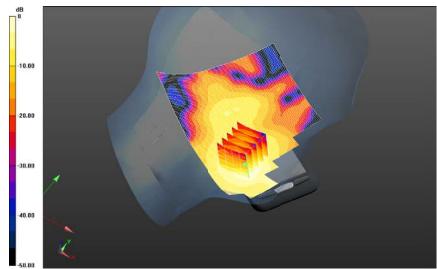
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.047 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 4.229 V/m; Power Drift = -0.04 dB

Averaged SAR: SAR(1g) = 0.044 W/kg; SAR(10g) = 0.025 W/kg

Maximum value of SAR (interpolated) = 0.071 W/kg

0 dB = 0.0468 W/kg = -13.29 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G w chip.da52:1

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 42 of 88

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

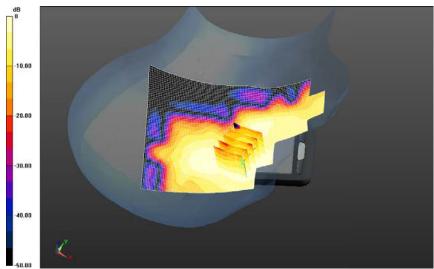
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.019 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 2.778 V/m; Power Drift = 0.07 dB

Averaged SAR: SAR(1g) = 0.020 W/kg; SAR(10g) = 0.011 W/kg

Maximum value of SAR (interpolated) = 0.032 W/kg

0 dB = 0.0192 W/kg = -17.16 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G wo chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 43 of 88

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

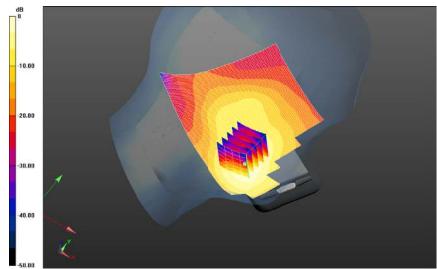
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.608 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 16.367 V/m; Power Drift = 0.14 dB

Averaged SAR: SAR(1g) = 0.541 W/kg; SAR(10g) = 0.322 W/kg

Maximum value of SAR (interpolated) = 0.835 W/kg

0 dB = 0.608 W/kg = -2.16 dBW/kg

Test Lab: EMCTech Test File: M140907 2100-1900 3G wo chip.da52:1

DUT Name: Samsung GSM-3G Mobile Phone, Type: GT-I9506, Serial: RF8F31GNJPK

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

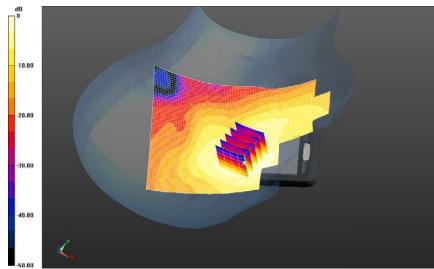
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.291 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 10.586 V/m; Power Drift = -0.05 dB

Averaged SAR: SAR(1g) = 0.265 W/kg; SAR(10g) = 0.162 W/kg

Maximum value of SAR (interpolated) = 0.385 W/kg

0 dB = 0.291 W/kg = -5.36 dBW/kg

Report No.: M140907_R2 Page 45 of 88

Test File: M140907 - 900 MHz 3G-retest-19-9-with chip.da52:0 Test Lab: EMCTech

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Left-with chip

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=900 MHz; σ = 0.97 S/m; ε_r = 41.5; ρ = 1000.0g/cm³

Phantom section: Left Section

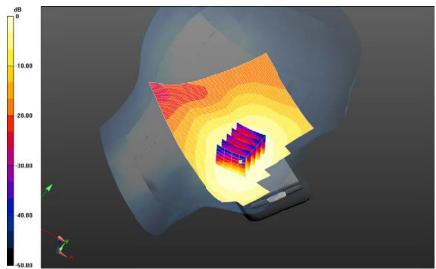
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left-with chip/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5


mm; Maximum value of SAR (interpolated) = 0.292 W/kg

Touch Left-with chip/Channel 2788 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 17.966 V/m; Power Drift = -0.01 dB

Averaged SAR: SAR(1g) = 0.302 W/kg; SAR(10g) = 0.219 W/kg

Maximum value of SAR (interpolated) = 0.371 W/kg

0 dB = 0.292 W/kg = -5.34 dBW/kg

Test Lab: EMCTech Test File: M140907 - 900 MHz 3G-retest-19-9-with chip.da52:1

Report No.: M140907_R2 Page 46 of 88

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Right-with chip

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=900 MHz; σ = 0.97 S/m; ϵ_r = 41.5; ρ = 1000.0g/cm³

Phantom section: Right Section

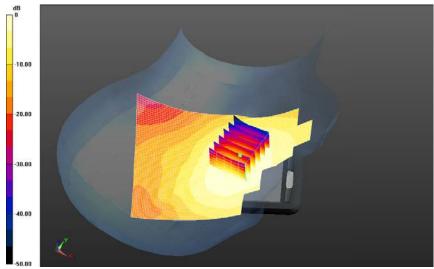
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right-with chip/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5


mm; Maximum value of SAR (interpolated) = 0.255 W/kg

Touch Right-with chip/Channel 2788 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 16.546 V/m; Power Drift = -0.05 dB

Averaged SAR: SAR(1g) = 0.252 W/kg; SAR(10g) = 0.188 W/kg

Maximum value of SAR (interpolated) = 0.307 W/kg

0 dB = 0.255 W/kg = -5.94 dBW/kg

Test Lab: The name of your organization Test File: M140907 - 900 MHz 3G-retest without chip.da52:2

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Left-without chip

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=900 MHz; $\sigma = 0.97$ S/m; $\varepsilon_r = 41.5$; $\rho = 1000.0$ g/cm³

Phantom section: Left Section

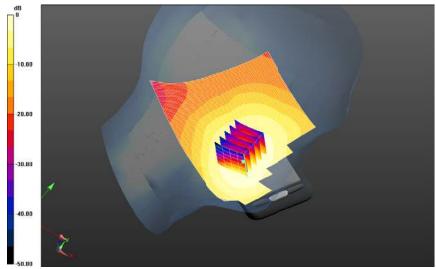
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7331)

Touch Left-without chip/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5


mm; Maximum value of SAR (interpolated) = 0.582 W/kg

Touch Left-without chip/Channel 2788 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6

mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 24.513 V/m; Power Drift = 0.06 dB

Averaged SAR: SAR(1g) = 0.580 W/kg; SAR(10g) = 0.411 W/kg

Maximum value of SAR (interpolated) = 0.783 W/kg

0 dB = 0.582 W/kg = -2.35 dBW/kg

Test Lab: The name of your organization

Test File: M140907 - 900 MHz 3G-retest without

chip.da52:3

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Right-without chip

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 8 900 MHz; Frequency: 897.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

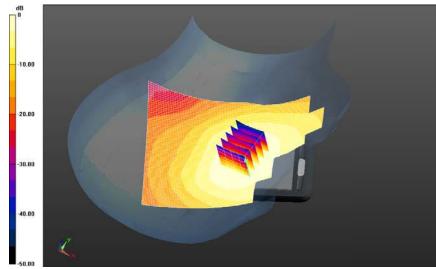
Medium Parameters used: f=900 MHz; σ = 0.97 S/m; ε_r = 41.5; ρ = 1000.0g/cm³

Phantom section: Right Section

DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (5.91,5.91,5.91); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 12; Type: SAM 12; Serial: 1060


DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7331)

Touch Right-without chip/Channel 2788 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.423 W/kg

Touch Right-without chip/Channel 2788 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 21.637 V/m; **Power Drift = 0.02 dB**

Averaged SAR: SAR(1g) = 0.422 W/kg; SAR(10g) = 0.321 W/kg

Maximum value of SAR (interpolated) = 0.496 W/kg

0 dB = 0.423 W/kg = -3.74 dBW/kg

Test Lab: EMCTech Test File: M140907 Phone 2100 MHz 3G w chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 49 of 88

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

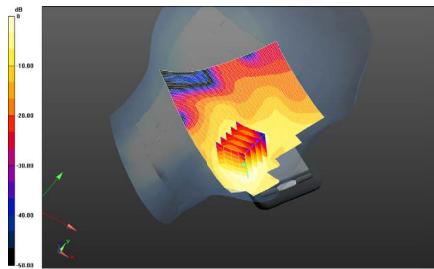
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.132 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 6.266 V/m; Power Drift = 0.16 dB

Averaged SAR: SAR(1g) = 0.115 W/kg; SAR(10g) = 0.068 W/kg

Maximum value of SAR (interpolated) = 0.182 W/kg

0 dB = 0.132 W/kg = -8.79 dBW/kg

Report No.: M140907_R2 Page 50 of 88

Test File: M140907 Phone 2100 MHz 3G w chip.da52:1

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

DASY Configuration:

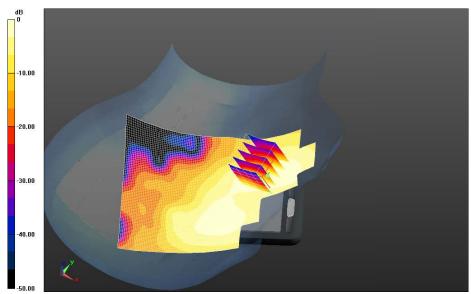
Test Lab: EMCTech

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.074 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 5.206 V/m; Power Drift = 0.18 dB

Averaged SAR: SAR(1g) = 0.065 W/kg; SAR(10g) = 0.040 W/kg

Maximum value of SAR (interpolated) = 0.099 W/kg

0 dB = 0.0742 W/kg = -11.30 dBW/kg

Test Lab: EMCTech Test File: M140907 Phone 2100 MHz 3G wo chip.da52:0

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Left

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Report No.: M140907_R2 Page 51 of 88

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Left Section

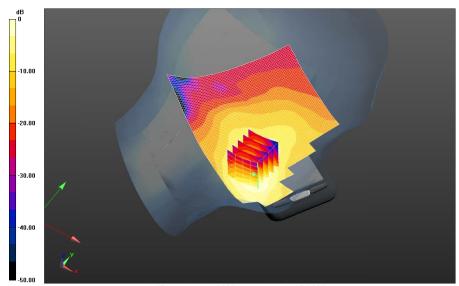
DASY Configuration:

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)

Touch Left/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;


Maximum value of SAR (interpolated) = 0.524 W/kg

Touch Left/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 12.429 V/m; Power Drift = -0.04 dB

Averaged SAR: SAR(1g) = 0.449 W/kg; SAR(10g) = 0.264 W/kg

Maximum value of SAR (interpolated) = 0.699 W/kg

0 dB = 0.524 W/kg = -2.81 dBW/kg

Test File: M140907 Phone 2100 MHz 3G wo chip.da52:1

Report No.: M140907_R2 Page 52 of 88

DUT Name: Samsung GSM-3G Mobile Phone, Type: SM-G900I, Serial: RF8F41XW20J

Configuration: Touch Right

Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 1 2100 MHz; Frequency: 1950 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00

Medium Parameters used: f=1950 MHz; σ = 1.42 S/m; ε_r = 40.7; ρ = 1000.0g/cm³

Phantom section: Right Section

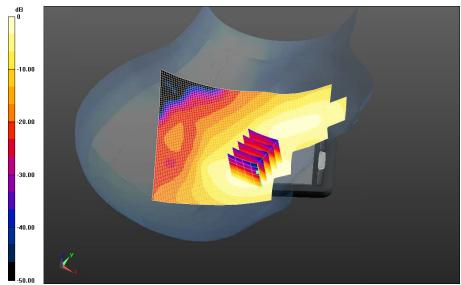
DASY Configuration:

Test Lab: EMCTech

Probe: ET3DV6 - SN1380; ConvF: (4.83,4.83,4.83); Calibrated: 13/12/2013;

Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn442; Calibrated: 10/12/2013 Phantom: SAM 22; Type: SAM 22; Serial: 1260

DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331)


Touch Right/Channel 9750 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm;

Maximum value of SAR (interpolated) = 0.249 W/kg

Touch Right/Channel 9750 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6

mm, dz=1.0 mm; Reference Value = 10.095 V/m; Power Drift = 0.04 dB Averaged SAR: SAR(1g) = 0.231 W/kg; SAR(10g) = 0.143 W/kg

Maximum value of SAR (interpolated) = 0.340 W/kg

0 dB = 0.249 W/kg = -6.04 dBW/kg

APPENDIX C DESCRIPTION OF SAR MEASUREMENT SYSTEM

Report No.: M140907_R2 Page 53 of 88

Probe Positioning System

The measurements were performed with the state of the art automated near-field scanning system **DASY5 Version 52** from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision 6-axis robot (working range greater than 1.1m), which positions the SAR measurement probes with a positional repeatability of better than ± 0.02 mm. The DASY5 fully complies with the IEEE 1528 and EN62209 SAR measurement requirements.

E-Field Probe Type and Performance

The SAR measurements were conducted with the dosimetric probe ET3DV6 or EX3DV4 was used (manufactured by SPEAG). The SAR probes are designed in the classical triangular configuration and optimised for dosimetric evaluation. The probe has been calibrated and found to be accurate to better than ± 0.25 dB. The probe is suitable for measurements close to material discontinuity at the surface of the phantom.

Data Acquisition Electronics

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. The input impedance of the DAE3 box is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80dB.Transmission to the PC-card is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe-mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

Device Holder for DASY5

The DASY5 device holder supplied by SPEAG is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The rotation centres for both scales is the ear opening. Thus the device needs no repositioning when changing the angles.

The DASY5 device holder is made of low-loss material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, to reduce the influence on the clamp on the test results.

Refer to Appendix A for photograph of device positioning.

Liquid Depth 15cm

During the SAR measurement process the liquid level was maintained to a level of a least 15cm with a tolerance of \pm 0.5cm.

Phantom Properties (Size, Shape, Shell Thickness, Tissue Material Properties)

The phantom used during the SAR testing and validation was the "SAM" phantom from SPEAG. The phantom thickness is 2.0mm+/-0.2 mm and was filled with the required tissue simulating liquid.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

The dielectric parameters of the simulating liquid were measured prior to SAR assessment using the HP85070A dielectric probe kit and HP8753ES Network Analyser. The target dielectric parameters are shown in the following table.

Table: Target Simulating Liquid Dielectric Values UMTS Bands

	E. rarget Simulatii	€r	σ	0
	Frequency (MHz)	(target)	(target)	kg/m³
Band	UMTS Band 1			
	1922.4	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
Frequency (MHz)	1950	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
	1977.6	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
Band	UMTS Band 2			
	1852.4	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
Frequency (MHz)	1880	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
	1907.6	40.0 ±5% (38.0 to 42.0)	1.40 ±5% (1.33 to 1.47)	1000
Band	UMTS Band 5			
	826.4	41.5 ±5% (39.4 to 43.6)	0.90 ±5% (0.86 to 0.95)	1000
Frequency (MHz)	836.6	41.5 ±5% (39.4 to 43.6)	0.90 ±5% (0.86 to 0.95)	1000
	846.6	41.5 ±5% (39.4 to 43.6)	0.90 ±5% (0.86 to 0.95)	1000
Band	UMTS Band 8			
	882.4	41.5 ±5% (39.4 to 43.6)	0.97 ±5% (0.92 to 1.02)	1000
Frequency (MHz)	897.6	41.5 ±5% (39.4 to 43.6)	0.97 ±5% (0.92 to 1.02)	1000
	912.6	41.5 ±5% (39.4 to 43.6)	0.97 ±5% (0.92 to 1.02)	1000

Note: The liquid parameters were within the required tolerances of $\pm 5\%$.

The tissue simulating liquids are created prior to the SAR evaluation and often require slight modification each day to obtain the correct dielectric parameters.

Table: Tissue Type: @ **850/900MHz**Volume of Liquid: 30 Litres

Approximate Composition	% By Weight
Distilled Water	41.05
Salt	1.35
Sugar	56.5
HEC	1.0
Bactericide	0.1

Approximate Composition	% By Weight
Distilled Water	61.17
Salt	0.31
Bactericide	0.29
Triton Y-100	38 23

Table: Tissue Type: @ 1800/1950MHz

Volume of Liquid: 30 Litres

Report No.: M140907_R2 Page 55 of 88

- 1. ET3DV6 SN: 1380 Probe Calibration Certificate
- 2. SN: 047 D900V2 Dipole Calibration Certificate
- 3. SN: 1113 D1950V3 Dipole Calibration Certificate
- 4. SN: 442 DAE3 Data Acquisition Electronics Calibration Certificate

Report No.: M140907_R2 Page 56 of 88

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

EMC Technologies

Certificate No: ET3-1380_Dec13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1380

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

December 13, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660 13-Dec-13 (No. DAE4-660_Dec13)		Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Function Name Laboratory Technician Claudio Leubler Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: December 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1380_Dec13

Page 1 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

 $\boldsymbol{\phi}$ rotation around probe axis

Polarization 9 9

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1380_Dec13

Page 2 of 11

Report No.: M140907_R2 Page 59 of 88

ET3DV6 - SN:1380

December 13, 2013

Probe ET3DV6

SN:1380

Manufactured: Calibrated:

August 16, 1999 December 13, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1380_Dec13

Page 3 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

ET3DV6-SN:1380

December 13, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.68	1.60	1.71	± 10.1 %
DCP (mV) ^B	94.2	94.3	95.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW X	CW X 0.0	0.0	1.0	0.00	236.5	±2.2 %	
		Y	0.0	0.0	1.0		191.3	
		Z	0.0	0.0	1.0		246.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1380_Dec13

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: M140907_R2 Page 61 of 88

ET3DV6-SN:1380

December 13, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	45.3	0.87	7.77	7.77	7.77	0.23	2.38	± 13.3 %
450	43.5	0.87	7.31	7.31	7.31	0.27	2.84	± 13.3 %
750	41.9	0.89	6.65	6.65	6.65	0.65	1.90	± 12.0 %
900	41.5	0.97	5.91	5.91	5.91	0.45	2.35	± 12.0 %
1640	40.3	1.29	5.25	5.25	5.25	0.58	2.51	± 12.0 %
1810	40.0	1.40	5.04	5.04	5.04	0.80	2.08	± 12.0 %
1950	40.0	1.40	4.83	4.83	4.83	0.80	2.09	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.80	1.73	± 12.0 %

Certificate No: ET3-1380_Dec13

Page 5 of 11

Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ET3DV6-SN:1380

December 13, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Calibration Parameter Determined in Body Tissue Simulating Media

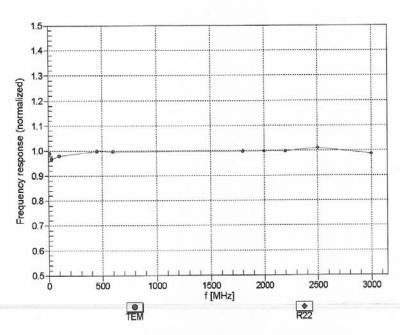
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.49	7.49	7.49	0.22	2.35	± 13.3 %
750	55.5	0.96	6.01	6.01	6.01	0.49	2.13	± 12.0 %
900	55.0	1.05	5.86	5.86	5.86	0.45	2.47	± 12.0 %
1810	53.3	1.52	4.68	4.68	4.68	0.80	2.33	± 12.0 %
1950	53.3	1.52	4.67	4.67	4.67	0.80	2.29	± 12.0 %
2450	52.7	1.95	4.12	4.12	4.12	0.63	1.10	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ET3-1380_Dec13

Page 6 of 11


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ET3DV6-SN:1380

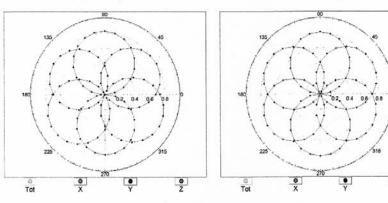
December 13, 2013

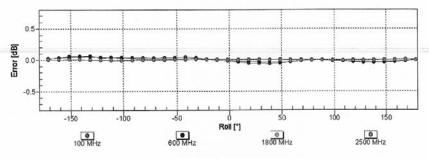
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1380_Dec13

Page 7 of 11


Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.


ET3DV6- SN:1380 December 13, 2013

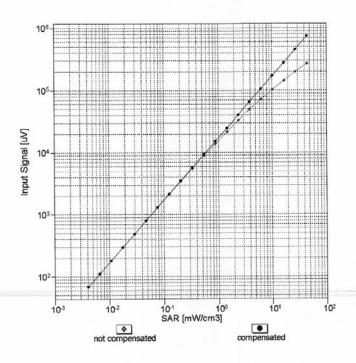
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

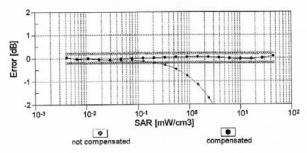
f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1380_Dec13

Page 8 of 11



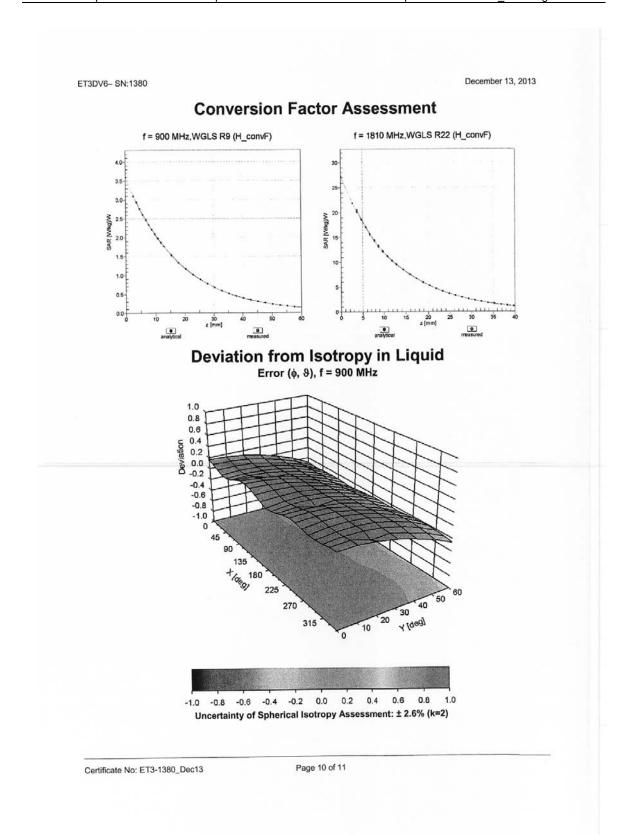


ET3DV6- SN:1380

December 13, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1380_Dec13

Page 9 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

ET3DV6-SN:1380

December 13, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-21.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1380_Dec13

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

EMC Technologies

Accreditation No.: SCS 108

C

Certificate No: D900V2-047_Jun12

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 047

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

June 22, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 901	05-Jul-11 (No. DAE4-901_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name

Function

chereten Tachaiden

Signature

Approved by:

Katja Poković

Technical Manager

Issued: June 22, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D900V2-047_Jun12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-047_Jun12

Page 2 of 8

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	2020
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.63 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.69 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.81 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.83 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	11.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.81 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.16 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-047_Jun12

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 3.9 jΩ
Return Loss	- 27.3 dB

Report No.: M140907_R2 Page 71 of 88

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω - 5.3 jΩ	
Return Loss	- 25.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.410 ns
Electrical Delay (one direction)	1.410113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 07, 1998	

Certificate No: D900V2-047_Jun12

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22.06.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

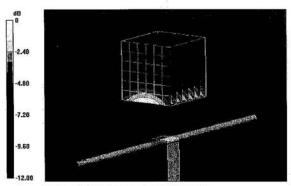
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn901; Calibrated: 05.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

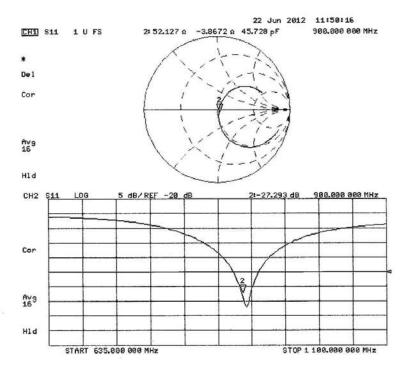
Reference Value = 58.816 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.956 mW/g

SAR(1 g) = 2.63 mW/g; SAR(10 g) = 1.69 mW/g

Maximum value of SAR (measured) = 3.09 mW/g

0 dB = 3.09 mW/g = 9.80 dB mW/g


Certificate No: D900V2-047_Jun12

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D900V2-047_Jun12

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.06.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

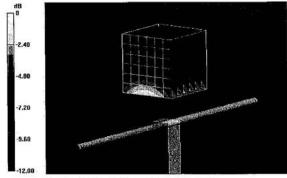
· Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn901; Calibrated: 05.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

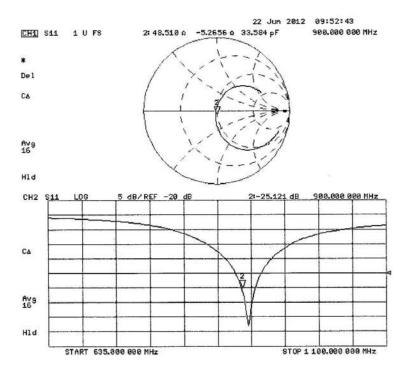
Reference Value = 57.369 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.370 mW/g

SAR(1 g) = 2.83 mW/g; SAR(10 g) = 1.81 mW/g

Maximum value of SAR (measured) = 3.32 mW/g

0 dB = 3.32 mW/g = 10.42 dB mW/g


Certificate No: D900V2-047_Jun12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D900V2-047_Jun12

Page 8 of 8

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

C

EMC Technologies

Certificate No: D1950V3-1113_Dec12

CALIBRATION CERTIFICATE

Object

D1950V3 - SN: 1113

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

December 06, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
Power sensor HP 8481A RF generator R&S SMT-06	MY41092317 100005	18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	In house check: Oct-13 In house check: Oct-13

Function

Calibrated by: Israe El-Naouq

Approved by: Katja Pokovic Technical Manager

Issued: December 6, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1950V3-1113_Dec12

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Glossary:

TSL

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1950V3-1113_Dec12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1950 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 16.5 % (k=2)

Certificate No: D1950V3-1113_Dec12

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.2 \Omega + 0.0 i\Omega$	
Return Loss	- 54.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 0.1 jΩ	
Return Loss	- 27.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 20, 2006	

Certificate No: D1950V3-1113_Dec12

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 06.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN: 1113

Communication System: CW; Frequency: 1950 MHz

Medium parameters used: f = 1950 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

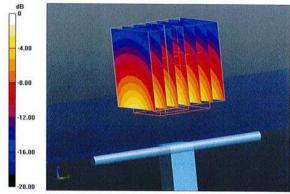
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001


DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

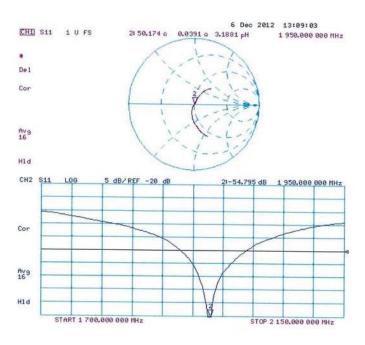
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.036 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.37 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg


Certificate No: D1950V3-1113_Dec12

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1950V3-1113_Dec12

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 06.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN: 1113

Communication System: CW; Frequency: 1950 MHz

Medium parameters used: f = 1950 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.73, 4.73, 4.73); Calibrated: 30.12.2011;

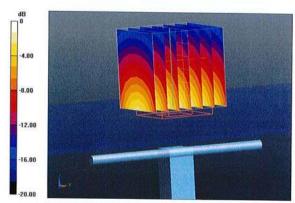
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

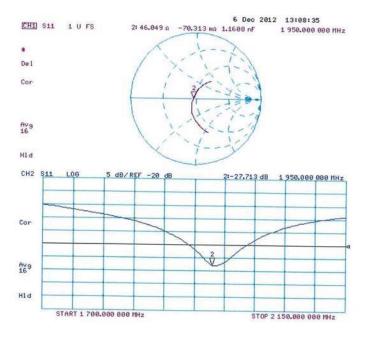
Reference Value = 93.722 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg


Certificate No: D1950V3-1113_Dec12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1950V3-1113_Dec12

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

Accreditation No.: SCS 108

S

C

S

Certificate No: DAE3-442_Dec13

CALIBRATION CERTIFICATE

Object

DAE3 - SD 000 D03 AE - SN: 442

Calibration procedure(s)

QA CAL-06.v26

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

December 10, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

Calibrated by:

Name Dominique Steffen Function Technician Signature

Approved by:

Fin Bomholt

Deputy Technical Manager

i.v. Ellen

Issued: December 10, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-442_Dec13

Page 1 of 5

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Report No.: M140907_R2 Page 85 of 88

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-442_Dec13

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$,

full range = -100...+300 mV

Low Range: 1LSB = 61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.392 ± 0.02% (k=2)	405.041 ± 0.02% (k=2)	405.256 ± 0.02% (k=2)
Low Range	3.98875 ± 1.50% (k=2)	3.98112 ± 1.50% (k=2)	3.99059 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	107.5 ° ± 1 °
---	---------------

Certificate No: DAE3-442_Dec13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Inp	ut 199993.72	-2.14	-0.00
Channel X + Inpo	ut 20000.86	0.45	0.00
Channel X - Inpu	t -19999.17	2.02	-0.01
Channel Y + Inpo	ut 199996.31	0.40	0.00
Channel Y + Inpo	ut 19999.51	-1.10	-0.01
Channel Y - Inpu	t -19999.92	1.09	-0.01
Channel Z + Inpo	ut 199995.50	-0.37	-0.00
Channel Z + Inpo	ut 20000.62	0.18	0.00
Channel Z - Inpu	t -20000.78	0.43	-0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.89	0.19	0.01
Channel X + Input	201.15	0.18	0.09
Channel X - Input	-197.88	0.92	-0.46
Channel Y + Input	2000.21	-0.38	-0.02
Channel Y + Input	200.77	-0.15	-0.08
Channel Y - Input	-200.31	-1.40	0.70
Channel Z + Input	1999.91	-0.68	-0.03
Channel Z + Input	200.63	-0.29	-0.14
Channel Z - Input	-199.19	-0.34	0.17

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-9.24	-11.23
	- 200	12.06	10.58
Channel Y	200	0.76	0.40
	- 200	-1.54	-1.84
Channel Z	200	-5.26	-5.50
	- 200	2.39	2.43

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		-0.05	-4.04
Channel Y	200	8.61		0.53
Channel Z	200	7.15	6.59	

Certificate No: DAE3-442_Dec13

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15799	16180
Channel Y	15773	16313
Channel Z	15591	16683

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.26	-1.81	1.47	0.63
Channel Y	0.14	-1.39	1.41	0.60
Channel Z	-3.02	-4.46	-1.61	0.67

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	es Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

